【2h】

Morphological transitions of elastic filaments in shear flow

机译:弹性长丝在剪切流中的形态学转变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The morphological dynamics, instabilities, and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming and are also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, we combine experiments and computational modeling to elucidate the dynamical regimes and morphological transitions of elastic Brownian filaments in a simple shear flow. Actin filaments are used as an experimental model system and their conformations are investigated through fluorescence microscopy in microfluidic channels. Simulations matching the experimental conditions are also performed using inextensible Euler–Bernoulli beam theory and nonlocal slender-body hydrodynamics in the presence of thermal fluctuations and agree quantitatively with observations. We demonstrate that filament dynamics in this system are primarily governed by a dimensionless elasto-viscous number comparing viscous drag forces to elastic bending forces, with thermal fluctuations playing only a secondary role. While short and rigid filaments perform quasi-periodic tumbling motions, a buckling instability arises above a critical flow strength. A second transition to strongly deformed shapes occurs at a yet larger value of the elasto-viscous number and is characterized by the appearance of localized high-curvature bends that propagate along the filaments in apparent “snaking” motions. A theoretical model for the as yet unexplored onset of snaking accurately predicts the transition and explains the observed dynamics. We present a complete characterization of filament morphologies and transitions as a function of elasto-viscous number and scaled persistence length and demonstrate excellent agreement between theory, experiments, and simulations.
机译:粘性流动中弹性细丝的形态动力学,不稳定性和过渡是从鞭毛推进到细胞内流动的大量生物物理过程的基础,也是解密许多复杂流体和软质材料的流变行为的关键。在这里,我们结合实验和计算模型来阐明简单剪切流中弹性布朗丝的动力学状态和形态转变。肌动蛋白丝用作实验模型系统,并在微流体通道中通过荧光显微镜检查其构象。在存在热波动的情况下,还使用不可扩展的Euler–Bernoulli束理论和非局部细长体流体力学来进行与实验条件匹配的模拟,并与观测结果定量地吻合。我们证明了该系统中的长丝动力学主要由无量纲的弹性粘数控制,粘弹性阻力与弹性弯曲力进行比较,而热波动仅起次要作用。当短而刚性的细丝执行准周期的翻滚运动时,在临界流动强度以上会出现屈曲不稳定性。向变形较大的形状的第二次转变发生在弹性粘数更大的值时,其特征是出现了局部高曲率弯曲,这些弯曲以明显的“蛇行”运动沿细丝传播。尚待探索的蛇行发作的理论模型可准确预测过渡并解释观察到的动力学。我们提供了一个完整的表征细丝形态和转变的函数,该函数是弹性粘数和缩放的持续时间的函数,并证明了理论,实验和仿真之间的出色一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号