首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser
【2h】

Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser

机译:使用X射线自由电子激光从天然纳米晶体颗粒病毒确定颗粒蛋白的原子结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.
机译:为了了解分子在生物系统中的功能,需要新的方法在生理条件下从生物材料中获得原子拆分结构。来自X射线自由电子激光(XFEL)的强烈飞秒持续时间脉冲可能会超出大多数损坏过程,从而在破坏样品之前大大增加了可耐受的剂量。反过来,这使得从晶体中确定结构的方法比以前认为的要小得多,并且对辐射的敏感性更高,从而允许从室温结构中收集数据,并避免了由于冷却引起的结构变化。无论如何,从XFEL数据获得的高分辨率结构大多使用体积远远大于1μm 3 的晶体,而X射线束通常会被衰减以保护检测器免受强烈布拉格点引起的损坏。在这里,我们使用直线加速器相干光源(LCLS)的全功率和一定剂量,描述了体积小于0.016μm 3 的天然纳米晶体颗粒病毒咬合体(OB)的2Å分辨率结构每个晶体高达1.3 GGy。颗粒病毒OB的结晶壳平均约有9,000个单位细胞,代表迄今为止通过X射线晶体学分析可产生高分辨率结构的最小蛋白质晶体。 XFEL结构几乎没有辐射损伤的迹象,并且比使用同步加速器数据确定的模型更完整,该模型是根据重组产生的,更大的冷冻颗粒病毒颗粒蛋白微晶体的同步加速器数据确定的。我们的测量结果表明,在理想的实验条件下,应该有可能使用当前可用的XFEL从体积仅为100个单位细胞的蛋白质晶体中获取数据,并建议单个生物分子的单分子成像几乎可以实现。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号