首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Plasma fibronectin stabilizes Borrelia burgdorferi–endothelial interactions under vascular shear stress by a catch-bond mechanism
【2h】

PNAS Plus: Plasma fibronectin stabilizes Borrelia burgdorferi–endothelial interactions under vascular shear stress by a catch-bond mechanism

机译:PNAS Plus:血浆纤连蛋白通过捕捉键机制在血管切应力作用下稳定伯氏疏螺旋体-内皮相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacterial dissemination via the cardiovascular system is the most common cause of infection mortality. A key step in dissemination is bacterial interaction with endothelia lining blood vessels, which is physically challenging because of the shear stress generated by blood flow. Association of host cells such as leukocytes and platelets with endothelia under vascular shear stress requires mechanically specialized interaction mechanisms, including force-strengthened catch bonds. However, the biomechanical mechanisms supporting vascular interactions of most bacterial pathogens are undefined. Fibronectin (Fn), a ubiquitous host molecule targeted by many pathogens, promotes vascular interactions of the Lyme disease spirochete Borrelia burgdorferi. Here, we investigated how B. burgdorferi exploits Fn to interact with endothelia under physiological shear stress, using recently developed live cell imaging and particle-tracking methods for studying bacterial–endothelial interaction biomechanics. We found that B. burgdorferi does not primarily target insoluble matrix Fn deposited on endothelial surfaces but, instead, recruits and induces polymerization of soluble plasma Fn (pFn), an abundant protein in blood plasma that is normally soluble and nonadhesive. Under physiological shear stress, caps of polymerized pFn at bacterial poles formed part of mechanically loaded adhesion complexes, and pFn strengthened and stabilized interactions by a catch-bond mechanism. These results show that B. burgdorferi can transform a ubiquitous but normally nonadhesive blood constituent to increase the efficiency, strength, and stability of bacterial interactions with vascular surfaces. Similar mechanisms may promote dissemination of other Fn-binding pathogens.
机译:通过心血管系统进行细菌传播是感染死亡的最常见原因。传播的关键步骤是细菌与内皮细胞血管的相互作用,由于血液流动产生的剪切应力,这在物理上具有挑战性。在血管切应力作用下,宿主细胞(如白细胞和血小板)与内皮的结合需要机械专用的相互作用机制,包括力增强的捕获键。但是,支持大多数细菌病原体的血管相互作用的生物力学机制尚未确定。纤连蛋白(Fn)是一种被许多病原体靶向的普遍存在的宿主分子,可促进莱姆病螺旋体疏螺旋体伯氏疏螺旋体的血管相互作用。在这里,我们使用最近开发的活细胞成像和颗粒追踪方法研究细菌-内皮相互作用的生物力学,研究了伯氏疏螺旋体在生理切应力下如何利用Fn与内皮相互作用。我们发现,B。burgdorferi并非主要针对沉积在内皮表面的不溶性基质Fn,而是募集并诱导了可溶性血浆Fn(pFn)的聚合,可溶性血浆Fn(pFn)是血浆中一种丰富的蛋白质,通常是可溶的且非粘附性的。在生理剪切应力下,细菌极上聚合的pFn的帽形成了机械负载的粘合复合物的一部分,而pFn通过捕捉键机制增强和稳定了相互作用。这些结果表明,B。burgdorferi可以转化普遍存在但通常不具有粘性的血液成分,从而提高细菌与血管表面相互作用的效率,强度和稳定性。类似的机制可能促进其他Fn结合病原体的传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号