首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water
【2h】

Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water

机译:离子吸附到水界面的机理:石墨烯/水与空气/水

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.
机译:离子对水界面的吸附是一种现象,深刻影响着许多科学领域的重要过程,包括生物学,大气化学,电能存储和水处理工程。尽管经典的静电理论预测离子会被水/疏水物(例如空气/水)界面排斥,但计算机模拟和实验均表明离液离子实际上在空气/水界面处显示出更高的浓度。尽管已经开发出机械图片来解释这种反直觉的观察,但是它们的总体适用性,尤其是在存在材料基底的情况下,仍不清楚。在这里,我们研究离子对水和石墨烯形成的模型界面的吸附。 SCN -离子(一种典型的离液剂)的深紫外线二次谐波测量结果确定了吸附自由能在空气/水的自由能范围内。与空气/水界面不同,其中溶剂能量的重新分配驱动离子吸附,我们的计算机模拟表明,直接的离子/石墨烯相互作用主导了有利的焓变。此外,与空气/水界面相反,石墨烯片阻尼毛细管波,使得溶质的旋转各向异性(如果存在)是主要的熵贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号