首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism
【2h】

Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism

机译:大肠杆菌σS转录起始复合物的结构为聚合酶机理提供了新见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In bacteria, multiple σ factors compete to associate with the RNA polymerase (RNAP) core enzyme to form a holoenzyme that is required for promoter recognition. During transcription initiation RNAP remains associated with the upstream promoter DNA via sequence-specific interactions between the σ factor and the promoter DNA while moving downstream for RNA synthesis. As RNA polymerase repetitively adds nucleotides to the 3′-end of the RNA, a pyrophosphate ion is generated after each nucleotide incorporation. It is currently unknown how the release of pyrophosphate affects transcription. Here we report the crystal structures of E. coli transcription initiation complexes (TICs) containing the stress-responsive σS factor, a de novo synthesized RNA oligonucleotide, and a complete transcription bubble (σS-TIC) at about 3.9-Å resolution. The structures show the 3D topology of the σS factor and how it recognizes the promoter DNA, including likely specific interactions with the template-strand residues of the −10 element. In addition, σS-TIC structures display a highly stressed pretranslocated initiation complex that traps a pyrophosphate at the active site that remains closed. The position of the pyrophosphate and the unusual phosphodiester linkage between the two terminal RNA residues suggest an unfinished nucleotide-addition reaction that is likely at equilibrium between nucleotide addition and pyrophosphorolysis. Although these σS-TIC crystals are enzymatically active, they are slow in nucleotide addition, as suggested by an NTP soaking experiment. Pyrophosphate release completes the nucleotide addition reaction and is associated with extensive conformational changes around the secondary channel but causes neither active site opening nor transcript translocation.
机译:在细菌中,多个σ因子竞争与RNA聚合酶(RNAP)核心酶缔合,形成启动子识别所需的全酶。在转录起始过程中,RNAP通过σ因子与启动子DNA之间的序列特异性相互作用保持与上游启动子DNA的结合,同时向下游移动以进行RNA合成。由于RNA聚合酶将核苷酸重复添加到RNA的3'端,因此在每个核苷酸掺入后都会生成焦磷酸根离子。目前尚不清楚焦磷酸盐的释放如何影响转录。在这里我们报告了大肠杆菌转录起始复合物(TICs)的晶体结构,该复合物包含应力响应σ S 因子,从头合成的RNA寡核苷酸和完整的转录气泡(σ S -TIC),分辨率约为3.9-Å。该结构显示了σ S 因子的3D拓扑结构以及它如何识别启动子DNA,包括可能与-10元素的模板链残基发生特异性相互作用。此外,σ S -TIC结构显示出高应力的预移位起始复合物,该复合物将焦磷酸盐捕获在保持封闭的活性位点。焦磷酸的位置和两个末端RNA残基之间异常的磷酸二酯键表明未完成的核苷酸加成反应,很可能在核苷酸加成与焦磷酸解之间达到平衡。尽管NTP浸泡实验表明,这些σ S -TIC晶体具有酶促活性,但它们的核苷酸添加速度较慢。焦磷酸盐的释放完成了核苷酸加成反应,并与次级通道周围的构象变化有关,但既不引起活性位点开放也不引起转录物移位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号