首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Computational investigation of cold denaturation in the Trp-cage miniprotein
【2h】

Computational investigation of cold denaturation in the Trp-cage miniprotein

机译:Trp-笼小蛋白冷变性的计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The functional native states of globular proteins become unstable at low temperatures, resulting in cold unfolding and impairment of normal biological function. Fundamental understanding of this phenomenon is essential to rationalizing the evolution of freeze-tolerant organisms and developing improved strategies for long-term preservation of biological materials. We present fully atomistic simulations of cold denaturation of an α-helical protein, the widely studied Trp-cage miniprotein. In contrast to the significant destabilization of the folded structure at high temperatures, Trp-cage cold denatures at 210 K into a compact, partially folded state; major elements of the secondary structure, including the α-helix, are conserved, but the salt bridge between aspartic acid and arginine is lost. The stability of Trp-cage’s α-helix at low temperatures suggests a possible evolutionary explanation for the prevalence of such structures in antifreeze peptides produced by cold-weather species, such as Arctic char. Although the 310-helix is observed at cold conditions, its position is shifted toward Trp-cage’s C-terminus. This shift is accompanied by intrusion of water into Trp-cage’s interior and the hydration of buried hydrophobic residues. However, our calculations also show that the dominant contribution to the favorable energetics of low-temperature unfolding of Trp-cage comes from the hydration of hydrophilic residues.
机译:球状蛋白的功能性天然状态在低温下变得不稳定,从而导致冷展开和正常生物学功能受损。对这种现象的基本理解对于合理化耐冻生物的进化以及为生物材料的长期保存制定改进的策略至关重要。我们提出了α-螺旋蛋白(广泛研究的Trp-笼小蛋白)冷变性的完全原子模拟。与高温下折叠结构的明显失稳相反,Trp笼式冷变形在210 K时变成致密的部分折叠状态。二级结构的主要元素(包括α-螺旋)得以保留,但天冬氨酸和精氨酸之间的盐桥丢失了。 Trp笼子的α螺旋在低温下的稳定性表明,这种结构在寒冷气候物种(例如北极炭)产生的抗冻肽中普遍存在这种进化解释。尽管在寒冷条件下观察到310螺旋,但其位置向Trp-cage的C端移动。这种变化伴随着水侵入Trp笼的内部以及掩埋的疏水残基的水合。然而,我们的计算还表明,Trp-笼低温展开的有利能量学的主要贡献来自亲水性残基的水合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号