首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Adiabatic quenches and characterization of amplitude excitations in a continuous quantum phase transition
【2h】

Adiabatic quenches and characterization of amplitude excitations in a continuous quantum phase transition

机译:连续量子相变中的绝热猝灭和振幅激发的表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu–Goldstone modes and massive Anderson–Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble–Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition.
机译:每当基态不共享基础理论(例如哈密顿量)的对称性时,自然系统中就会发生自发对称破坏。这种机制产生了无质量的Nambu-Goldstone模式和大量的Anderson-Higgs模式。这些模式提供了对宇宙中物质的基本理解,并在多体系统中显示为阶跃参数的集体相位或振幅激励。振幅激励在确定控制Kibble-Zurek机理(KZM)的普遍非平衡动力学的关键指数中起着至关重要的作用。在这里,我们表征自旋1冷凝物中的振幅激励,并测量量子相变不同相的能隙。在跃迁的量子临界点,有限尺寸效应会导致非零间隙。我们的测量与该预测一致,此外,我们证明了通过相变的绝热猝灭,这在平均场水平上是禁止的。这项工作为通过绝热相变产生缠结铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号