首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone
【2h】

PNAS Plus: Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone

机译:PNAS Plus:在模型最小氧气区中将生物地球化学与多组学序列信息相结合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet—a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite “leakage” during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales.
机译:微生物是地球上最丰富的生命形式,介导了物质和能量的全球通量。在过去的十年中,产生多组学序列信息(DNA,mRNA和蛋白质)的高通量分子技术改变了我们对这种微观世界的认识,从概念上将个体,种群和社区层面的微生物与广泛的生态系统功能联系在一起,服务。在这里,我们开发了一个生物地球化学模型,该模型描述了Saanich Inlet(一个季节性缺氧的峡湾,其生物地球化学类似于最低氧区域)的氧化还原梯度上的代谢耦合。该模型复制了整个氧化还原梯度中测得的生物地球化学过程速率以及DNA,mRNA和蛋白质浓度曲线。模拟预测了普遍存在的OMZ微生物在介导碳,氮和硫循环中的作用。例如,预计SUP05γ变形杆菌在不完全的硫化物驱动的反硝化过程中亚硝酸盐“泄漏”将支持无机碳固定和通过厌氧铵氧化引起的大量氮损失。这种耦合为减少一氧化二氮创造了一个新的生态位,从而完成了当前身份不明的社区成员的反硝化作用。这些结果定量地改善了先前描述OMZ中微生物代谢网络的概念模型。除了特定于OMZ的预测外,模型结果还表明,地球化学通量是微生物群落结构的可靠指标,而相反,基因丰度和地球化学条件在很大程度上决定了基因表达模式。如此处所示,将真实的观测数据(包括地球化学特征和过程速率测量以及宏基因组学,超转录组学和超蛋白质组学序列数据)整合到生物地球化学模型中,可以全面了解微生物代谢网络,从而在生态系统规模上驱动营养和能量流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号