首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >From the Cover: Engineered temperature compensation in a synthetic genetic clock
【2h】

From the Cover: Engineered temperature compensation in a synthetic genetic clock

机译:从封面开始:合成基因钟中的工程温度补偿

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications.
机译:合成生物学有望通过提供重新设计和重新编程细胞调节机制的手段来彻底改变生物技术。但是,合成基因电路通常不可靠,因为环境条件的变化会从根本上改变电路的行为。一种提高鲁棒性的方法是利用电路中转录因子的内在特性来缓冲细胞内和细胞外的变异性。在这里,我们描述了在大肠杆菌中合成基因振荡器的设计和构建,该振荡器在一定温度范围内保持恒定的周期。我们从先前描述的温度依赖周期的合成双反馈振荡器开始。计算模型预测和随后的实验证实,电路核心转录阻遏物的单个氨基酸突变会导致温度补偿。具体来说,我们使用了对温度敏感的乳糖阻遏物突变体,该突变体在高温下失去了抑制其靶标启动子的能力。在振荡器中,阻遏物的这种热感应导致高温下的周期增加,从而补偿了由于反应速度的阿伦尼乌斯规模导致的周期减少。结果是转录振荡器在30°C至41°C的温度范围内具有几乎恒定的48分钟周期。相反,在没有突变的情况下,在相同温度范围内,振荡器的周期从60分钟降至30分钟。这项工作表明,可以通过蛋白质水平修饰将合成基因电路改造成对细胞外条件稳定的基因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号