首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Transduction channels’ gating can control friction on vibrating hair-cell bundles in the ear
【2h】

Transduction channels’ gating can control friction on vibrating hair-cell bundles in the ear

机译:转导通道的门控可以控制耳朵中振动毛细胞束的摩擦

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force–displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell’s characteristic frequency of responsiveness.
机译:当毛细胞束的声音诱发的机械振动激活机械敏感离子通道并产生电信号时,就会开始听觉。对于任何机械系统,摩擦都会阻碍发束的运动,从而限制听觉传导的敏感性和频率选择性。通常认为摩擦主要是由周围流体的粘性阻力引起的。我们在这里证明了转导通道的打开和关闭会产生内部摩擦力,该摩擦力可以控制微米级发束上的粘性阻力。我们通过分析单个毛细胞束对周期性三角形刺激的力-位移关系中的滞后现象来表征摩擦。对于足够高的束速度,它超出了适应性,我们发现摩擦力在偏转的狭窄区域内最大,该偏转区域引起明显的通道门控,在应用通道阻滞剂后直线下降,并显示出亚线性增长以增加束速度。在低速时,摩擦力和速度之间的关系的斜率几乎比通过切断尖端链节使换能器与束运动分离时测得的流体动摩擦系数大五倍。理论分析表明,通道摩擦起因于与通道门控相关的构象变化动力学与尖端连接张力耦合。通道特性的变化会影响摩擦,而更快的通道会产生较小的摩擦。我们建议,这种内在的摩擦源可能有助于设定毛细胞的特征性反应频率的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号