首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Ancient translation factor is essential for tRNA-dependent cysteine biosynthesis in methanogenic archaea
【2h】

Ancient translation factor is essential for tRNA-dependent cysteine biosynthesis in methanogenic archaea

机译:古代翻译因子对于产甲烷的古细菌中tRNA依赖性半胱氨酸的生物合成至关重要

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Methanogenic archaea lack cysteinyl-tRNA synthetase; they synthesize Cys-tRNA and cysteine in a tRNA-dependent manner. Two enzymes are required: Phosphoseryl-tRNA synthetase (SepRS) forms phosphoseryl-tRNACys (Sep-tRNACys), which is converted to Cys-tRNACys by Sep-tRNA:Cys-tRNA synthase (SepCysS). This represents the ancestral pathway of Cys biosynthesis and coding in archaea. Here we report a translation factor, SepCysE, essential for methanococcal Cys biosynthesis; its deletion in Methanococcus maripaludis causes Cys auxotrophy. SepCysE acts as a scaffold for SepRS and SepCysS to form a stable high-affinity complex for tRNACys causing a 14-fold increase in the initial rate of Cys-tRNACys formation. Based on our crystal structure (2.8-Å resolution) of a SepCysS⋅SepCysE complex, a SepRS⋅SepCysE⋅SepCysS structure model suggests that this ternary complex enables substrate channeling of Sep-tRNACys. A phylogenetic analysis suggests coevolution of SepCysE with SepRS and SepCysS in the last universal common ancestral state. Our findings suggest that the tRNA-dependent Cys biosynthesis proceeds in a multienzyme complex without release of the intermediate and this mechanism may have facilitated the addition of Cys to the genetic code.
机译:产甲烷的古细菌缺乏半胱氨酰-tRNA合成酶。他们以tRNA依赖的方式合成Cys-tRNA和半胱氨酸。需要两种酶:磷酸丝氨酰tRNA合成酶(SepRS)形成磷酸丝氨酰tRNA Cys (Sep-tRNA Cys ),然后将其转化为Cys-tRNA Cys <由Sep-tRNA:Cys-tRNA合酶(SepCysS)提供。这代表了古细菌中Cys生物合成和编码的祖先途径。在这里,我们报告了一个翻译因子SepCysE,它对于甲烷球菌Cys的生物合成至关重要;其在马氏甲烷球菌中的缺失导致半胱氨酸营养缺陷。 SepCysE充当SepRS和SepCysS的支架,形成稳定的tRNA Cys 高亲和力复合物,导致Cys-tRNA Cys 形成的初始速率增加14倍。根据我们的SepCysS·SepCysE配合物的晶体结构(2.8-Å分辨率),SepRS·SepCysE·SepCysS结构模型表明该三元配合物可实现Sep-tRNA Cys 的底物通道化。系统发育分析表明,SepCysE与SepRS和SepCysS在最后的普遍祖先状态下共同进化。我们的发现表明,tRNA依赖的Cys生物合成可以在不释放中间体的情况下以多酶复合物的形式进行,并且这种机制可能促进了Cys向遗传密码的添加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号