首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Mechanism of vibrational energy dissipation of free OH groups at the air–water interface
【2h】

Mechanism of vibrational energy dissipation of free OH groups at the air–water interface

机译:空气-水界面自由OH基的振动能量耗散机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air–water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air–H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.
机译:液态水的界面在生物学,各种技术和环境中发生的各种过程中起着至关重要的作用。许多宏观观察表明,液态水界面的性质与散装液体的界面明显不同。除了界面分子结构外,对于充分了解水和水溶液的物理和化学过程(例如化学反应速率和途径,质子转移和氢键动力学),了解过量振动能量的速率和机理也是必不可少的。 。在这里,我们使用飞秒双色IR泵/振动和频探针光谱学阐明了水分子在空气-水界面处的振动能量消散的速率和机理。非氢键合OH基团的振动松弛发生在亚皮秒级的时间尺度上,其方式与散装氢键合OH基团的本质上根本不同,这是通过两种相互竞争的机制进行的:分子内能量转移和超快速重新取向运动,导致游离的OH基团变为氢键合。这两种途径均有效地导致了激发的振动模式从自由键转移到氢键键合的OH基团,由此容易发生弛豫。在空气-H2O界面上的界面游离OH基团的总体弛豫速率中,三分之二是分子内能量转移引起的,而其余的三分之一则由重新定向运动控制。这些发现不仅揭示了界面水的振动能量动力学,而且有助于我们理解结构和振动动力学对水界面振动和频线形的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号