首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Real-time high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass
【2h】

Real-time high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass

机译:实时高分辨率研究循环应变金属玻璃中的纳米结晶和疲劳裂纹

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications.
机译:金属玻璃(MGs)比其结晶金属对应物具有更大的弹性极限和更强的抗塑性变形能力。在亚微米长度范围内,它们承受塑性变形的能力进一步增强。对于一系列微机电应用,在部分或完全约束下,MG对热和机械应力或应变循环的破坏和破裂的抵抗性具有相当大的科学技术意义。然而,据我们所知,没有实时,高分辨率的透射电子显微镜观察到任何金属玻璃中由于受到周期性施加的应变或位移而产生的结晶,损坏和破坏。在这里,我们介绍了在高分辨率透射电子显微镜中进行的独特原位研究的结果,该研究涉及铝基MG的玻璃晶体形成和疲劳。我们证明,循环应变逐渐在起子缺口的高度变形区域中导致纳米级表面粗糙,从而导致裂纹成核和纳米晶体的形成。这些纳米颗粒在循环应变期间的生长通过桥接裂纹阻碍了随后的裂纹生长。与这种疲劳行为形成鲜明对比的是,仅观察到较小纳米晶体的分布成核,而在单调变形下没有表面粗糙。我们进一步通过分子动力学模拟表明,这些发现可以通过应变诱导的非仿射原子重排的积累来合理化,该重排有效地增强了重复应变循环过程中通过随机游走的扩散。因此,本研究结果提供了对MG疲劳基本机制的独特见解,这将有助于制定材料设计和工程应用的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号