首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Computational model of a circulation current that controls electrochemical properties in the mammalian cochlea
【2h】

Computational model of a circulation current that controls electrochemical properties in the mammalian cochlea

机译:控制哺乳动物耳蜗电化学特性的循环电流计算模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sound-evoked mechanical stimuli permit endolymphatic K+ to enter sensory hair cells. This transduction is sensitized by an endocochlear potential (EP) of +80 mV in endolymph. After depolarizing the cells, K+ leaves hair cells in perilymph, and it is then circulated back to endolymph across the lateral cochlear wall. In theory, this process entails a continuous and unidirectional current carried by apical K+ channels and basolateral K+ uptake transporters in both the marginal cell and syncytial layers of the lateral wall. The transporters regulate intracellular and extracellular [K+], allowing the channels to form K+ diffusion potentials across each of the two layers. These diffusion potentials govern the EP. What remains uncertain is whether these transport mechanisms accumulating across diverse cell layers make up a continuous circulation current in the lateral wall and how this current might affect the characteristics of the endolymph. To address this question, we developed an electrophysiological model that incorporates channels and transporters of the lateral wall and channels of hair cells that derive a circulation current. The simulation replicated normal experimental EP values and reproduced experimentally measured changes in the EP and intra- and extracellular [K+] in the lateral wall when different transporters and channels were blocked. The model predicts that, under these different conditions, the circulation current’s contribution to the EP arises from different sources. Finally, our model also accurately simulated EP loss in a mouse model of a chloride channelopathy associated with deafness.
机译:声音诱发的机械刺激使内淋巴K + 进入感觉毛细胞。内淋巴中的+80 mV的耳蜗电位(EP)使这种转导敏感。使细胞去极化后,K + 将毛细胞留在外周淋巴中,然后通过侧耳蜗壁循环回到内淋巴。从理论上讲,此过程需要在侧壁的边缘细胞和合胞体层中由顶端K + 通道和基底外侧K + 吸收转运蛋白携带连续和单向电流。转运蛋白调节细胞内和细胞外[K + ],使通道在两层中的每一层形成K + 扩散势。这些扩散势能控制着EP。尚不确定的是,这些跨不同细胞层积累的转运机制是否在侧壁上构成了连续的循环电流,以及该电流如何影响内淋巴的特征。为了解决这个问题,我们开发了一种电生理模型,该模型结合了侧壁的通道和转运蛋白以及毛发细胞通道的循环电流。模拟复制了正常的实验EP值,并复制了当不同的转运蛋白和通道被阻塞时,EP以及侧壁中细胞内和细胞外[K + ]的实验测量值变化。该模型预测,在这些不同的条件下,循环电流对EP的贡献来自不同的来源。最后,我们的模型还精确模拟了与耳聋相关的氯离子通道病的小鼠模型中的EP丢失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号