首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Allostery in the ferredoxin protein motif does not involve a conformational switch
【2h】

Allostery in the ferredoxin protein motif does not involve a conformational switch

机译:铁氧还蛋白蛋白基序中的变构不涉及构象转换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Regulation of protein function via cracking, or local unfolding and refolding of substructures, is becoming a widely recognized mechanism of functional control. Oftentimes, cracking events are localized to secondary and tertiary structure interactions between domains that control the optimal position for catalysis and/or the formation of protein complexes. Small changes in free energy associated with ligand binding, phosphorylation, etc., can tip the balance and provide a regulatory functional switch. However, understanding the factors controlling function in single-domain proteins is still a significant challenge to structural biologists. We investigated the functional landscape of a single-domain plant-type ferredoxin protein and the effect of a distal loop on the electron-transfer center. We find the global stability and structure are minimally perturbed with mutation, whereas the functional properties are altered. Specifically, truncating the L1,2 loop does not lead to large-scale changes in the structure, determined via X-ray crystallography. Further, the overall thermal stability of the protein is only marginally perturbed by the mutation. However, even though the mutation is distal to the iron–sulfur cluster (∼20 Å), it leads to a significant change in the redox potential of the iron–sulfur cluster (57 mV). Structure-based all-atom simulations indicate correlated dynamical changes between the surface-exposed loop and the iron–sulfur cluster-binding region. Our results suggest intrinsic communication channels within the ferredoxin fold, composed of many short-range interactions, lead to the propagation of long-range signals. Accordingly, protein interface interactions that involve L1,2 could potentially signal functional changes in distal regions, similar to what is observed in other allosteric systems.
机译:通过裂解或亚结构的局部展开和再折叠来调节蛋白质功能,已成为功能控制的公认机制。通常,裂化事件局限于控制催化和/或蛋白质复合物形成的最佳位置的结构域之间的二级和三级结构相互作用。与配体结合,磷酸化等相关的自由能的细微变化可以平衡平衡并提供调节功能的开关。但是,了解控制单域蛋白功能的因素仍然是结构生物学家的重大挑战。我们调查了单域植物型铁氧还蛋白蛋白的功能格局以及远端环对电子转移中心的影响。我们发现全局稳定性和结构受突变的影响最小,而功能特性却发生了变化。具体而言,将L1,2环截短不会导致通过X射线晶体学确定的结构发生大规模变化。此外,该蛋白质的整体热稳定性仅受到突变的轻微干扰。但是,即使该突变位于铁硫簇的远端(〜20Å),也会导致铁硫簇的氧化还原电位(57 mV)发生显着变化。基于结构的全原子模拟表明表面暴露的环与铁硫团簇结合区之间存在相关的动力学变化。我们的结果表明,铁氧还蛋白折叠内的固有通信通道由许多短程相互作用组成,导致长程信号的传播。因此,涉及L1,2的蛋白质界面相互作用可能潜在地指示远端区域的功能变化,类似于在其他变构系统中观察到的变化。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号