首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Long-lived quantum coherence in photosynthetic complexes at physiological temperature
【2h】

Long-lived quantum coherence in photosynthetic complexes at physiological temperature

机译:生理温度下光合配合物的长寿命量子相干性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center that stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer—a wave-like transfer mechanism—occurs in many photosynthetic pigment-protein complexes. Using the Fenna–Matthews–Olson antenna complex (FMO) as a model system, theoretical studies incorporating both incoherent and coherent transfer as well as thermal dephasing predict that environmentally assisted quantum transfer efficiency peaks near physiological temperature; these studies also show that this mechanism simultaneously improves the robustness of the energy transfer process. This theory requires long-lived quantum coherence at room temperature, which never has been observed in FMO. Here we present evidence that quantum coherence survives in FMO at physiological temperature for at least 300 fs, long enough to impact biological energy transport. These data prove that the wave-like energy transfer process discovered at 77 K is directly relevant to biological function. Microscopically, we attribute this long coherence lifetime to correlated motions within the protein matrix encapsulating the chromophores, and we find that the degree of protection afforded by the protein appears constant between 77 K and 277 K. The protein shapes the energy landscape and mediates an efficient energy transfer despite thermal fluctuations.
机译:光合天线复合物通过将激发转移到反应中心来捕获并集中太阳辐射,反应中心以化学键的形式存储来自光子的能量。该过程以接近完美的量子效率发生。最近在低温下进行的实验表明,许多光合作用的色素-蛋白质复合物中都发生了相干的能量转移(一种波状转移机制)。使用Fenna-Matthews-Olson天线复合体(FMO)作为模型系统,结合非相干和相干转移以及热相移的理论研究预测,环境辅助的量子转移效率在生理温度附近达到峰值。这些研究还表明,该机制同时提高了能量转移过程的鲁棒性。该理论要求在室温下具有长寿命的量子相干性,这在FMO中从未观察到。在这里,我们提供证据证明量子相干性在FMO中在生理温度下可以存活至少300 fs,足以影响生物能量传输。这些数据证明在77 K处发现的波状能量转移过程与生物学功能直接相关。在显微镜下,我们将较长的相干寿命归因于包裹发色团的蛋白质基质内的相关运动,并且我们发现蛋白质提供的保护程度在77K和277K之间呈现恒定。蛋白质塑造了能量结构并介导了有效的尽管存在热波动,但能量传递仍然有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号