首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs
【2h】

A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs

机译:Aquifex aeolicus中的天然嵌合IIA型拓扑异构酶突显了功能旁系同源物出现的进化途径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacteria frequently possess two type IIA DNA topoisomerases, gyrase and topo IV, which maintain chromosome topology by variously supercoiling, relaxing, and disentangling DNA. DNA recognition and functional output is thought to be controlled by the C-terminal domain (CTD) of the topoisomerase DNA binding subunit (GyrA/ParC). The deeply rooted organism Aquifex aeolicus encodes one type IIA topoisomerase conflictingly categorized as either DNA gyrase or topo IV. To resolve this enzyme’s catalytic properties and heritage, we conducted a series of structural and biochemical studies on the isolated GyrA/ParC CTD and the holoenzyme. Whereas the CTD displays a global structure similar to that seen in bone fide GyrA and ParC paralogs, it lacks a key functional motif (the “GyrA-box”) and fails to wrap DNA. Biochemical assays show that the A. aeolicus topoisomerase cannot supercoil DNA, but robustly removes supercoils and decatenates DNA, two hallmark activities of topo IV. Despite these properties, phylogenetic analyses place all functional domains except the CTD squarely within a gyrase lineage, and the A. aeolicus GyrB subunit is capable of supporting supercoiling with Escherichia coli GyrA, but not DNA relaxation with E. coli ParC. Moreover, swapping the A. aeolicus GyrA/ParC CTD with the GyrA CTD from Thermotoga maritima creates an enzyme that negatively supercoils DNA. These findings identify A. aeolicus as the first bacterial species yet found to exist without a functional gyrase, and suggest an evolutionary path for generation of bacterial type IIA paralogs.
机译:细菌通常具有两种IIA型DNA拓扑异构酶,即回旋酶和topo IV,它们通过各种超螺旋,松弛和解缠DNA来维持染色体拓扑。 DNA识别和功能输出被认为受拓扑异构酶DNA结合亚基(GyrA / ParC)的C端结构域(CTD)控制。根深蒂固的生物Aquifex aeolicus编码一种IIA型拓扑异构酶,有冲突地归类为DNA促旋酶或topo IV。为了解决该酶的催化特性和传统,我们对分离的GyrA / ParC CTD和全酶进行了一系列结构和生化研究。 CTD显示出与真实GyrA和ParC旁系同源物相似的整体结构,但它缺少关键的功能基序(“ GyrA-box”),并且无法包裹DNA。生化分析表明,风铃拟南芥拓扑异构酶不能超螺旋DNA,但可以强有力地去除超螺旋并消除DNA,这是拓扑IV的两个标志性活动。尽管具有这些特性,但系统发育分析将除CTD之外的所有功能域均置于旋转酶谱系之内,而油曲霉GyrB亚基能够支持大肠杆菌GyrA的超螺旋作用,而不能支持大肠杆菌ParC的DNA松弛作用。此外,将油曲霉GyrA / ParC CTD与来自海栖栖热菌的GyrA CTD交换会产生一种酶,使DNA产生超螺旋。这些发现将油曲霉确定为第一个没有功能促旋酶存在的细菌,并暗示了产生细菌IIA型旁系同源物的进化途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号