首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics
【2h】

Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics

机译:表面陷阱在CdSe / CdS / ZnS纳米晶体光致发光衰减动力学中的作用的定量建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Charge carrier trapping is an important phenomenon in nanocrystal (NC) decay dynamics because it reduces photoluminescence (PL) quantum efficiencies and obscures efforts to understand the interaction of NC excitons with their surroundings. Particularly crucial to our understanding of excitation dynamics in, e.g., multiNC assemblies, would be a way of differentiating between processes involving trap states and those that do not. Direct optical measurement of NC trap state processes is not usually possible because they have negligible transition dipole moments; however, they are known to indirectly affect exciton photoluminescence. Here, we develop a framework, based on Marcus electron transfer theory, to determine NC trap state dynamics from time-resolved NC exciton PL measurements. Our results demonstrate the sensitivity of PL to interfacial dynamics, indicating that the technique can be used as an indirect but effective probe of trap distribution changes. We anticipate that this study represents a step toward understanding how excitons in nanocrystals interact with their surroundings: a quality that must be optimized for their efficient application in photovoltaics, photodetectors, or chemical sensors.
机译:电荷载流子俘获是纳米晶体(NC)衰减动力学中的重要现象,因为它降低了光致发光(PL)量子效率,并且使人们难以理解NC激子与周围环境的相互作用。对于我们对例如multiNC组件中的激励动力学的理解而言,特别重要的是一种区分涉及陷阱状态的过程和不涉及陷阱状态的过程的方法。通常不可能直接进行NC陷阱状态过程的光学测量,因为它们的跃迁偶极矩可忽略不计。但是,已知它们会间接影响激子的光致发光。在这里,我们基于Marcus电子转移理论开发了一个框架,用于从时间分辨的NC激子PL测量确定NC陷阱状态动力学。我们的结果证明了PL对界面动力学的敏感性,表明该技术可以用作陷阱分布变化的间接但有效的探针。我们预计这项研究代表了迈向理解纳米晶体激子如何与其周围环境相互作用的一步:必须对其质量进行优化才能有效地将其应用于光伏,光电探测器或化学传感器中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号