首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri
【2h】

Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri

机译:氢气是巴氏甲烷八叠球菌(Methanosarcina barkeri)的节能电子传输链中的首选中间体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Methanogens use an unusual energy-conserving electron transport chain that involves reduction of a limited number of electron acceptors to methane gas. Previous biochemical studies suggested that the proton-pumping F420H2 dehydrogenase (Fpo) plays a crucial role in this process during growth on methanol. However, Methanosarcina barkeri Δfpo mutants constructed in this study display no measurable phenotype on this substrate, indicating that Fpo plays a minor role, if any. In contrast, Δfrh mutants lacking the cytoplasmic F420-reducing hydrogenase (Frh) are severely affected in their ability to grow and make methane from methanol, and double Δfpo/Δfrh mutants are completely unable to use this substrate. These data suggest that the preferred electron transport chain involves production of hydrogen gas in the cytoplasm, which then diffuses out of the cell, where it is reoxidized with transfer of electrons into the energy-conserving electron transport chain. This hydrogen-cycling metabolism leads directly to production of a proton motive force that can be used by the cell for ATP synthesis. Nevertheless, M. barkeri does have the flexibility to use the Fpo-dependent electron transport chain when needed, as shown by the poor growth of the Δfrh mutant. Our data suggest that the rapid enzymatic turnover of hydrogenases may allow a competitive advantage via faster growth rates in this freshwater organism. The mutant analysis also confirms the proposed role of Frh in growth on hydrogen/carbon dioxide and suggests that either Frh or Fpo is needed for aceticlastic growth of M. barkeri.
机译:产甲烷菌使用不寻常的节能电子传输链,该链涉及将有限数量的电子受体还原为甲烷气体。先前的生化研究表明,质子泵浦的F420H2脱氢酶(Fpo)在此过程中在甲醇上生长过程中起着至关重要的作用。然而,在这项研究中构建的巴氏甲烷八叠球菌Δfpo突变体在该底物上没有可测量的表型,表明如果有的话,Fpo的作用很小。相比之下,缺乏胞质F420还原氢酶(Frh)的Δfrh突变体的生长能力和从甲醇制甲烷的能力受到严重影响,而双Δfpo/Δfrh突变体完全无法使用该底物。这些数据表明,优选的电子传输链涉及在细胞质中产生氢气,然后氢气扩散出细胞,并在其中通过电子转移进入能量节约的电子传输链而被再氧化。这种氢循环代谢直接导致质子原动力的产生,质子原动力可被细胞用于ATP合成。不过,正如Δfrh突变体的生长不良所示,巴克莫氏杆菌确实具有在需要时使用Fpo依赖性电子传输链的灵活性。我们的数据表明,在这种淡水生物中,酶的快速酶促转化可能通过更快的生长速度而带来竞争优势。突变分析还证实了Frh在氢/二氧化碳生长中的拟议作用,并暗示Frh或Fpo是巴克利氏菌的破弹孔生长所必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号