首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint
【2h】

A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint

机译:系统生物学方法确定调节薄荷中单萜类香精油成分的生化机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The integration of mathematical modeling and experimental testing is emerging as a powerful approach for improving our understanding of the regulation of metabolic pathways. In this study, we report on the development of a kinetic mathematical model that accurately simulates the developmental patterns of monoterpenoid essential oil accumulation in peppermint (Mentha × piperita). This model was then used to evaluate the biochemical processes underlying experimentally determined changes in the monoterpene pathway under low ambient-light intensities, which led to an accumulation of the branchpoint intermediate (+)-pulegone and the side product (+)-menthofuran. Our simulations indicated that the environmentally regulated changes in monoterpene profiles could only be explained when, in addition to effects on biosynthetic enzyme activities, as yet unidentified inhibitory effects of (+)-menthofuran on the branchpoint enzyme pulegone reductase (PR) were assumed. Subsequent in vitro analyses with recombinant protein confirmed that (+)-menthofuran acts as a weak competitive inhibitor of PR (Ki = 300 μM). To evaluate whether the intracellular concentration of (+)-menthofuran was high enough for PR inhibition in vivo, we isolated essential oil-synthesizing secretory cells from peppermint leaves and subjected them to steam distillations. When peppermint plants were grown under low-light conditions, (+)-menthofuran was selectively retained in secretory cells and accumulated to very high levels (up to 20 mM), whereas under regular growth conditions, (+)-menthofuran levels remained very low (<400 μM). These results illustrate the utility of iterative cycles of mathematical modeling and experimental testing to elucidate the mechanisms controlling flux through metabolic pathways.
机译:数学建模和实验测试的集成正在作为一种强大的方法而出现,可以用来增强我们对代谢途径调控的理解。在这项研究中,我们报告了动力学数学模型的开发,该数学模型可精确模拟薄荷(Mentha×piperita)中单萜类精油积累的发展模式。然后,该模型用于评估在低环境光强度下单萜途径中实验确定的变化背后的生化过程,这导致分支点中间体(+)-普勒高酮和副产物(+)-薄荷脑的积累。我们的模拟结果表明,只有在对生物合成酶活性产生影响的情况下,才可以解释单萜分布中受环境调节的变化,但假定(+)-薄荷草醚对分支点酶Pulegone还原酶(PR)的抑制作用尚未确定。随后用重组蛋白进行的体外分析证实,(+)-menthofuran可作为PR的弱竞争抑制剂(Ki = 300μM)。为了评估(+)-薄荷脑的细胞内浓度是否足够高,可以在体内抑制PR,我们从薄荷叶中分离了精油合成的分泌细胞,并对其进行了蒸汽蒸馏。当薄荷植物在弱光条件下生长时,(+)-menthofuran被选择性保留在分泌细胞中并积累到很高的水平(最高20 mM),而在正常的生长条件下,(+)-menthofuran的水平仍然很低。 (<400μM)。这些结果说明了数学建模和实验测试的迭代循环对阐明通过代谢途径控制通量的机制的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号