首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >High-Pressure Geoscience Special Feature: Shearing instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes
【2h】

High-Pressure Geoscience Special Feature: Shearing instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes

机译:高压地球科学特色:高压相变带来的剪切不稳定性和深部地震的力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep earthquakes have been a paradox since their discovery in the 1920s. The combined increase of pressure and temperature with depth precludes brittle failure or frictional sliding beyond a few tens of kilometers, yet earthquakes occur continually in subduction zones to ≈700 km. The expected healing effects of pressure and temperature and growing amounts of seismic and experimental data suggest that earthquakes at depth probably represent self-organized failure analogous to, but different from, brittle failure. The only high-pressure shearing instabilities identified by experiment require generation in situ of a small fraction of very weak material differing significantly in density from the parent material. This “fluid” spontaneously forms mode I microcracks or microanticracks that self-organize via the elastic strain fields at their tips, leading to shear failure. Growing evidence suggests that the great majority of subduction zone earthquakes shallower than 400 km are initiated by breakdown of hydrous phases and that deeper ones probably initiate as a shearing instability associated with breakdown of metastable olivine to its higher-pressure polymorphs. In either case, fault propagation could be enhanced by shear heating, just as is sometimes the case with frictional sliding in the crust. Extensive seismological interrogation of the region of the Tonga subduction zone in the southwest Pacific Ocean provides evidence suggesting significant metastable olivine, with implication for its presence in other regions of deep seismicity. If metastable olivine is confirmed, either current thermal models of subducting slabs are too warm or published kinetics of olivine breakdown reactions are too fast.
机译:自1920年代发现以来,深地震一直是一个悖论。压力和温度随深度的增加共同作用,可以防止脆性破坏或摩擦滑动超过几十公里,但在俯冲带中连续发生地震直到≈700公里。压力和温度的预期治愈效果以及不断增加的地震和实验数据表明,深部地震可能代表了自组织破坏,类似于但不同于脆性破坏。通过实验确定的唯一高压剪切不稳定性需要原位生成一小部分非常弱的材料,其密度与母体材料的密度显着不同。这种“流体”自发形成I型微裂纹或微抗裂纹,它们通过其尖端的弹性应变场自组织,从而导致剪切破坏。越来越多的证据表明,俯冲带地震的大部分深度小于400 km是由于含水相的破裂引起的,而较深的地震可能是与亚稳橄榄石破裂成高压多晶型有关的剪切不稳定性而引起的。无论哪种情况,都可以通过剪切加热来增强断层的传播,就像在地壳中发生摩擦滑动时一样。西南太平洋汤加俯冲带区域的广泛地震学调查提供了证据,表明存在明显的亚稳橄榄石,这暗示着它存在于其他深地震活动地区。如果证实了亚稳态橄榄石,或者当前俯冲板的热模型太热,或者公布的橄榄石分解反应动力学太快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号