首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB
【2h】

Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB

机译:硫醇盐-醌电荷转移复合物及其加合物形式在DsbB从头生成二硫键中的关键作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent studies have revealed numerous examples in which oxidation and reduction of cysteines in proteins are integrated into specific cascades of biological regulatory systems. In general, these reactions proceed as thiol-disulfide exchange events. However, it is not exactly understood how a disulfide bond is created de novo. DsbB, an Escherichia coli plasma membrane protein, is one of the enzymes that create a new disulfide bond within itself and in DsbA, the direct catalyst of protein disulfide bond formation in the periplasmic space. DsbB is associated with a cofactor, either ubiquinone or menaquinone, as a source of an oxidizing equivalent. The DsbB-bound quinone undergoes transition to a pink (λmax, ≈500 nm, ubiquinone) or violet (λmax, ≈550 nm, menaquinone)-colored state during the course of the DsbB enzymatic reaction. Here we show that not only the thiolate form of Cys-44 previously suggested but also Arg-48 in the α-helical arrangement is essential for the quinone transition. Quantum chemical simulations indicate that proper positioning of thiolate anion and ubiquinone in conjunction with positively charged guanidinium moiety of arginine allows the formation of a thiolate-ubiquinone charge transfer complex with absorption peaks at ≈500 nm as well as a cysteinylquinone covalent adduct. We propose that the charge transfer state leads to the transition state adduct that accepts a nucleophilic attack from another cysteine to generate a disulfide bond de novo. A similar mechanism is conceivable for a class of eukaryotic dithiol oxidases having a FAD cofactor.
机译:最近的研究揭示了许多实例,其中蛋白质中的半胱氨酸的氧化和还原被整合到生物调节系统的特定级联中。通常,这些反应以硫醇-二硫键交换事件进行。但是,尚不完全了解如何从头产生二硫键。 DsbB是一种大肠杆菌质膜蛋白,是在自身内部以及在周质空间中直接形成蛋白质二硫键的催化剂DsbA中产生新的二硫键的酶之一。 DsbB与辅助因子泛醌或甲萘醌相关,可作为氧化等效物的来源。在DsbB酶促反应过程中,与DsbB结合的醌经历了粉红色(λmax,≈500nm,泛醌)或紫色(λmax,≈550nm,甲萘醌)彩色状态的转变。在这里我们表明,不仅先前提出的Cys-44的硫醇盐形式而且α-螺旋排列的Arg-48对醌过渡都是必不可少的。量子化学模拟表明,硫氰酸盐阴离子和泛醌与精氨酸带正电荷的胍基部分的正确定位允许形成硫醇盐-泛醌电荷转移复合物,其吸收峰在约500 nm处以及半胱氨酰醌共价加合物。我们提出电荷转移状态导致过渡状态加合物,其接受来自另一个半胱氨酸的亲核攻击以从头产生二硫键。对于具有FAD辅因子的一类真核二硫醇氧化酶,可以想到类似的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号