【2h】

From the Cover: Optimization of ionic conductivity in doped ceria

机译:从封面开始:优化掺杂二氧化铈中的离子电导率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present a quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy–dopant interactions, represented by association (binding) energies of vacancy–dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately.
机译:已知具有立方萤石结构的氧化物,例如二氧化铈(CeO2),当掺杂有化合价比主体阳离子低的阳离子时,它们是良好的固体电解质。掺杂二氧化铈的高离子电导率使其成为固体氧化物燃料电池的诱人电解质,其作为环境友好型电源的前景十分广阔。在这些电解质中,电流由氧空位传输的氧离子所携带,氧空位是为了补偿掺杂剂阳离子的较低电荷而存在的。二氧化铈中的离子电导率与氧空位的形成和迁移特性密切相关。在掺杂剂的选择和氧化铈中离子电导率的改善之间的联系上,仍然缺乏清晰的物理图像。在这里,我们介绍了不同三价杂质对这些性质的影响的量子力学第一性原理研究。我们的结果揭示了原子级空位性质与宏观离子电导率之间的显着对应关系。关键参数包括大量扩散和空位-掺杂剂相互作用的迁移壁垒,以空位-掺杂剂簇的缔合(结合)能表示。相互作用可分为排斥性弹性部分和吸引人的电子部分。在最佳电解质中,这些部分应保持平衡。该发现提供了一种简单明了的方法来缩小对高级掺杂剂和掺杂剂组合的搜索范围。理想的掺杂剂应具有在61(Pm)和62(Sm)之间的有效原子序数,并且我们阐述了Nd / Sm和Pr / Gd的组合与分别单独使用的每个元素相比均具有增强的离子电导率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号