首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >From the Cover: Force production by depolymerizing microtubules: A theoretical study
【2h】

From the Cover: Force production by depolymerizing microtubules: A theoretical study

机译:从封面开始:通过微管解聚产生力:理论研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Chromosome movement during mitosis is powered in part by energy released through the depolymerization of kinetochore microtubules (MTs). Strong but indirect evidence suggests the existence of a specialized coupling between kinetochores and MT plus ends that enables this transduction of chemical energy into mechanical work. Analysis of this phenomenon is important for learning how energy is stored within the MT lattice, how it is transduced, and how efficient the process can be, given coupling devices of different designs. Here we use a recently developed molecular-mechanical model of MTs to examine the mechanism of disassembly dependent force generation. Our approach is based on changes in tubulin dimer conformation that occur during MT disassembly. We find that all of the energy of polymerization-associated GTP hydrolysis can be stored as deformations of the longitudinal bonds between tubulin dimers, and its optimal use does not require the weakening of lateral bonds between dimers. Maximum utilization of this stored energy and, hence, the generation of the strongest possible force, is achieved by a protofilament power-stroke mechanism, so long as the coupling device does not restrict full dissociation of the lateral bonds between tubulin dimers.
机译:有丝分裂微管(MTs)解聚释放的能量部分驱动有丝分裂期间的染色体运动。有力的但间接的证据表明,动植物和MT加上末端之间存在专门的耦合,从而能够将化学能转化为机械功。在给定不同设计的耦合设备的情况下,对这种现象进行分析对于了解如何在MT晶格中存储能量,如何进行能量转换以及过程的效率非常重要。在这里,我们使用最近开发的MT的分子力学模型来检查依赖于分解力的产生机理。我们的方法基于MT拆卸过程中微管蛋白二聚体构象的变化。我们发现,聚合相关的GTP水解的所有能量都可以存储为微管蛋白二聚体之间的纵向键变形,并且其最佳使用不需要削弱二聚体之间的侧键。只要耦合装置不限制微管蛋白二聚体之间侧键的完全解离,就可以通过原丝动力冲程机制最大程度地利用这种存储的能量,从而最大程度地发挥最大的作用力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号