首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS
【2h】

Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS

机译:通过去除严重磷酸化的神经丝尾结构域来改变轴突结构大大减缓超氧化物歧化酶1突变体介导的ALS

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Eliminating assembled neurofilaments (NFs) from axons or misaccumulating NFs in motor neuron cell bodies strongly slows disease in mouse models of mutant superoxide dismutase 1 (SOD1)-induced amyotrophic lateral sclerosis. One proposal for how reducing axonal NFs can increase survival is that the multiphosphorylated tail domains of the two larger NF subunits act in motor neuron cell bodies as phosphorylation sinks where they mitigate cyclin-dependent kinase 5 dysregulation induced by mutant SOD1. Elimination by gene targeting in mice of the NF medium and NF heavy tail domains and their 58 known phosphorylation sites accelerates aberrant phosphorylation of other neuronal substrates while leaving overall NF content unaltered. However, disease onset is significantly delayed and survival is extended, inconsistent with the ameliorative property of altered NF content protecting by serving as substrates for dysregulation of any NF kinase. Moreover, at comparable disease stages significantly more surviving motor neurons and axons were found in SOD1 mutant mice deleted in the NF tails than in similar mice with wild-type NFs. This finding supports noncell autonomous toxicity in SOD1 mutant-mediated amyotrophic lateral sclerosis: removal of the NF tails slows damage developed directly within motor neurons, but SOD1 mutant damage within nonneuronal supporting cells reduces motor neuron functionality.
机译:在突变超氧化物歧化酶1(SOD1)诱导的肌萎缩性侧索硬化的小鼠模型中,消除轴突的组装神经丝(NFs)或运动神经元细胞体中NFs的蓄积会大大减缓疾病。减少轴突NFs如何增加存活率的一项建议是,两个较大的NF亚基的多磷酸化尾结构域在运动神经元细胞体中起磷酸化作用,从而减轻了突变型SOD1诱导的细胞周期蛋白依赖性激酶5失调。通过对小鼠的NF培养基和NF重尾结构域及其58个已知的磷酸化位点进行基因靶向消除,可加速其他神经元底物的异常磷酸化,同时保持总的NF含量不变。然而,疾病的发作被显着延迟并且存活期延长,这与通过用作任何NF激酶失调的底物而保护的改变的NF含量的改良特性不一致。此外,在相似的疾病阶段,与野生型NFs相似的小鼠相比,在NF尾部缺失的SOD1突变小鼠中发现了更多的存活运动神经元和轴突。这一发现支持在SOD1突变体介导的肌萎缩性侧索硬化症中的非细胞自主毒性:去除NF尾部会减慢直接在运动神经元内发展的损伤,但在非神经元支持细胞内的SOD1突变体损伤会降低运动神经元的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号