首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >From the Cover: Graphene nanostructures as tunable storage media for molecular hydrogen
【2h】

From the Cover: Graphene nanostructures as tunable storage media for molecular hydrogen

机译:从封面开始:石墨烯纳米结构作为分子氢的可调存储介质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many methods have been proposed for efficient storage of molecular hydrogen for fuel cell applications. However, despite intense research efforts, the twin U.S. Department of Energy goals of 6.5% mass ratio and 62 kg/m3 volume density has not been achieved either experimentally or via theoretical simulations on reversible model systems. Carbon-based materials, such as carbon nanotubes, have always been regarded as the most attractive physisorption substrates for the storage of hydrogen. Theoretical studies on various model graphitic systems, however, failed to reach the elusive goal. Here, we show that insufficiently accurate carbon–H2 interaction potentials, together with the neglect and incomplete treatment of the quantum effects in previous theoretical investigations, led to misleading conclusions for the absorption capacity. A proper account of the contribution of quantum effects to the free energy and the equilibrium constant for hydrogen adsorption suggest that the U.S. Department of Energy specification can be approached in a graphite-based physisorption system. The theoretical prediction can be realized by optimizing the structures of nano-graphite platelets (graphene), which are light-weight, cheap, chemically inert, and environmentally benign.
机译:已经提出了许多方法来有效地存储用于燃料电池的分子氢。然而,尽管进行了大量的研究,但美国能源部的双目标是质量比为6.5%,体积密度为62 kg / m 3 ,无论是通过实验还是通过可逆模型系统的理论模拟都未能实现。碳基材料(例如碳纳米管)一直被视为用于存储氢的最具吸引力的物理吸附基质。然而,对各种模型石墨系统的理论研究未能达到难以捉摸的目标。在这里,我们显示出碳氢相互作用的准确度不够准确,再加上先前理论研究中对量子效应的忽视和不完全处理,导致对吸收能力的误导性结论。适当地考虑了量子效应对自由能的贡献以及氢吸附的平衡常数,表明可以在基于石墨的物理吸附系统中采用美国能源部的技术规范。通过优化纳米石墨薄片(石墨烯)的结构,可以实现理论预测,该薄片轻巧,便宜,化学惰性且对环境无害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号