首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco
【2h】

Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco

机译:系统发育工程在大和小的亚基之间的界面赋予藻类Rubisco陆地植物动力学特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO2 fixation and, thus, limits agricultural productivity. However, Rubisco enzymes from different species have different catalytic constants. If the structural basis for such differences were known, a rationale could be developed for genetically engineering an improved enzyme. Residues at the bottom of the large-subunit α/β-barrel active site of Rubisco from the green alga Chlamydomonas reinhardtii (methyl-Cys-256, Lys-258, and Ile-265) were previously changed through directed mutagenesis and chloroplast transformation to residues characteristic of land-plant Rubisco (Phe-256, Arg-258, and Val-265). The resultant enzyme has decreases in carboxylation efficiency and CO2/O2 specificity, despite the fact that land-plant Rubisco has greater specificity than the Chlamydomonas enzyme. Because the residues are close to a variable loop between β-strands A and B of the small subunit that can also affect catalysis, additional substitutions were created at this interface. When large-subunit Val-221 and Val-235 were changed to land-plant Cys-221 and Ile-235, they complemented the original substitutions and returned CO2/O2 specificity to the normal level. Further substitution with the shorter βA-βB loop of the spinach small subunit caused a 12-17% increase in specificity. The enhanced CO2/O2 specificity of the mutant enzyme is lower than that of the spinach enzyme, but the carboxylation and oxygenation kinetic constants are nearly indistinguishable from those of spinach and substantially different from those of Chlamydomonas Rubisco. Thus, this interface between large and small subunits, far from the active site, contributes significantly to the differences in catalytic properties between algal and land-plant Rubisco enzymes.
机译:1,5-双磷酸核糖羧化酶/加氧酶(Rubisco)催化了光合作用固碳的限速步骤,因此限制了农业生产力。但是,来自不同物种的Rubisco酶具有不同的催化常数。如果知道了这种差异的结构基础,那么就可以开发出一种遗传改良改良酶的原理。之前通过定向诱变和叶绿体转化将绿藻莱茵衣藻(甲基衣藻体-Cys-256,Lys-258和Ile-265)的Rubisco大亚基α/β-桶活性位点底部的残基更改为陆地植物Rubisco(Phe-256,Arg-258和Val-265)的特征残基。尽管陆地植物Rubisco比衣藻酶更具特异性,但所得酶的羧化效率和CO2 / O2特异性却降低了。由于残基靠近小亚基的β链A和B之间的可变环,这也可能影响催化作用,因此在该界面处创建了其他取代基。当将大亚基Val-221和Val-235改为陆地植物Cys-221和Ile-235时,它们补充了原来的替代物,并使CO2 / O2特异性恢复到正常水平。用菠菜小亚基的较短的βA-βB环进一步取代会导致特异性提高12-17%。突变酶的增强的CO2 / O2特异性低于菠菜酶,但是羧化和氧合动力学常数与菠菜几乎没有区别,并且与衣藻有很大不同。因此,远离活性位点的大亚基和小亚基之间的界面对藻类和陆地植物Rubisco酶之间的催化特性差异做出了重要贡献。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号