首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Damped elastic recoil of the titin spring in myofibrils of human myocardium
【2h】

Damped elastic recoil of the titin spring in myofibrils of human myocardium

机译:人体肌原纤维中替丁弹簧的弹性后座力减弱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by using a high-speed charge-coupled device-line camera and a nanonewtonrange force sensor. Application of a slack-test protocol revealed that the passive shortening velocity (Vp) of nonactivated cardiomyofibrils depends on: (i) initial sarcomere length, (ii) release-step amplitude, and (iii) temperature. Selective digestion of titin, with low doses of trypsin, decelerated myofibrillar passive recoil and eventually stopped it. Selective extraction of actin filaments with a Ca2+-independent gelsolin fragment greatly reduced the dependency of Vp on release-step size and temperature. These results are explained by the presence of viscous forces opposing myofibrillar passive recoil that are caused mainly by weak actin–titin interactions. Thus, Vp is determined by two distinct factors: titin elastic recoil and internal viscous drag forces. The recoil could be modeled as that of a damped entropic spring consisting of independent worm-like chains. The functional importance of myofibrillar elastic recoil was addressed by comparing instantaneous Vp to unloaded shortening velocity, which was measured in demembranated, fully Ca2+-activated, human cardiac fibers. Titin-driven passive recoil was much faster than active unloaded shortening velocity in early phases of isotonic contraction. Damped myofibrillar elastic recoil could help accelerate active contraction speed of human myocardium during early systolic shortening.
机译:巨大的蛋白滴定蛋白充当肌肉中的分子弹簧,并负责心肌的大部分被动张力。由于钛蛋白弹簧在舒张期拉伸过程中会伸展,因此它将在收缩期弹性回缩,并有可能影响心肌的整体缩短行为。在这里,通过使用高速电荷耦合设备线相机和纳牛顿力传感器,对单个人心脏肌原纤维中的肌动蛋白弹性后坐力进行了定量。松弛试验方案的应用表明,未激活的心肌原纤维的被动缩短速度(Vp)取决于:(i)肌节的初始长度,(ii)释放步幅,以及(iii)温度。用低剂量的胰蛋白酶选择性地稀释肌酐,可降低肌原纤维被动后坐力,并最终使其停止。选择性地提取独立于Ca 2 + 的凝溶胶蛋白片段的肌动蛋白丝,大大降低了Vp对释放步长和温度的依赖性。这些结果可以通过存在抵抗肌原纤维被动后坐力的粘性力来解释,这些力主要是由肌动蛋白与肌动蛋白之间的弱相互作用引起的。因此,Vp由两个不同的因素决定:钛弹性回缩力和内部粘性阻力。可以将后坐力建模为由独立的蠕虫状链条组成的阻尼熵弹簧。通过比较瞬时Vp与空载的起酥油速度来解决肌原纤维弹性后坐力的功能重要性,该速度在去膜的,完全由Ca 2 + 活化的人心脏纤维中测量。在等张性收缩的早期,Titin驱动的被动后坐力比主动空载的缩短速度快得多。减缓的肌原纤维弹性后坐力有助于在收缩期缩短的早期加速人心肌的主动收缩速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号