首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Supramolecular Chemistry And Self-assembly Special Feature: Fibronectin extension and unfolding within cell matrix fibrilscontrolled by cytoskeletal tension
【2h】

Supramolecular Chemistry And Self-assembly Special Feature: Fibronectin extension and unfolding within cell matrix fibrilscontrolled by cytoskeletal tension

机译:超分子化学和自组装特征:纤连蛋白在细胞基质原纤维中的延伸和展开由细胞骨架张力控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Evidence is emerging that mechanical stretching can alter the functional states of proteins. Fibronectin (Fn) is a large, extracellular matrix protein that is assembled by cells into elastic fibrils and subjected to contractile forces. Assembly into fibrils coincides with expression of biological recognition sites that are buried in Fn's soluble state. To investigate how supramolecular assembly of Fn into fibrillar matrix enables cells to mechanically regulate its structure, we used fluorescence resonance energy transfer (FRET) as an indicator of Fn conformation in the fibrillar matrix of NIH 3T3 fibroblasts. Fn was randomly labeled on amine residues with donor fluorophores and site-specifically labeled on cysteine residues in modules FnIII7 and FnIII15 with acceptor fluorophores. Intramolecular FRET was correlated with known structural changes of Fn in denaturing solution, then applied in cell culture as an indicator of Fn conformation within the matrix fibrils of NIH 3T3 fibroblasts. Based on the level of FRET, Fn in many fibrils was stretched by cells so that its dimer arms were extended and atleast one FnIII module unfolded. When cytoskeletal tension wasdisrupted using cytochalasin D, FRET increased, indicating refolding ofFn within fibrils. These results suggest that cell-generated force isrequired to maintain Fn in partially unfolded conformations. Theresults support a model of Fn fibril elasticity based on unraveling andrefolding of FnIII modules. We also observed variation of FRET betweenand along single fibrils, indicating variation in the degree ofunfolding of Fn in fibrils. Molecular mechanisms by which mechanicalforce can alter the structure of Fn, converting tensile forces intobiochemical cues, are discussed.
机译:越来越多的证据表明机械拉伸可以改变蛋白质的功能状态。纤连蛋白(Fn)是一种大型的细胞外基质蛋白,被细胞组装成弹性原纤维并受到收缩力。组装成原纤维与以Fn的可溶状态掩埋的生物识别位点的表达相吻合。为了研究Fn的超分子组装到纤维状基质中如何使细胞机械调节其结构,我们使用了荧光共振能量转移(FRET)作为NIH 3T3成纤维细胞纤维状基质中Fn构象的指标。用供体荧光团将Fn随机标记在胺残基上,并用受体荧光团将FnIII7和FnIII15模块中的半胱氨酸残基位点特异性标记。分子内FRET与变性溶液中Fn的已知结构变化相关,然后应用于细胞培养,作为NIH 3T3成纤维细胞基质原纤维中Fn构象的指标。根据FRET的水平,许多原纤维中的Fn被细胞拉伸,从而使其二聚臂伸展并处于至少一个FnIII模块已展开。当细胞骨架张力为使用细胞松弛素D破坏后,FRET增加,表明纤维内有Fn。这些结果表明细胞产生的力是需要将Fn维持在部分展开的构象中。的结果支持了基于解开的Fn原纤维弹性模型和重新折叠FnIII模块。我们还观察到FRET之间的差异并沿原纤维,表明程度的变化Fn在原纤维中的展开。机械的分子机制力可以改变Fn的结构,将拉力转化为生化线索,进行了讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号