首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Femtosecond dynamics of flavoproteins: Charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme
【2h】

Femtosecond dynamics of flavoproteins: Charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme

机译:黄酮蛋白的飞秒动力学:核黄素(维生素B2)结合蛋白和葡萄糖氧化酶中的电荷分离和重组

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flavoproteins can function as hydrophobic sites for vitamin B2 (riboflavin) or, in other structures, with cofactors for catalytic reactions such as glucose oxidation. In this contribution, we report direct observation of charge separation and recombination in two flavoproteins: riboflavin-binding protein and glucose oxidase. With femtosecond resolution, we observed the ultrafast electron transfer from tryptophan(s) to riboflavin in the riboflavin-binding protein, with two reaction times: ≈100 fs (86% component) and 700 fs (14%). The charge recombination was observed to take place in 8 ps, as probed by the decay of the charge-separated state and the recovery of the ground state. The time scale for charge separation and recombination indicates the local structural tightness for the dynamics to occur that fast and with efficiency of more than 99%. In contrast, in glucose oxidase, electron transfer between flavin-adenine-dinucleotide and tryptophan(s)/tyrosine(s) takes much longer times, 1.8 ps (75%) and 10 ps (25%); the corresponding charge recombination occurs on two time scales, 30 ps and nanoseconds, and the efficiency is still more than 97%. The contrast in time scales for the two structurally different proteins (of the same family) correlates with the distinction in function: hydrophobic recognition of the vitamin in the former requires a tightly bound structure (ultrafast dynamics), and oxidation-reduction reactions in the latter prefer the formation of a charge-separated state that lives long enough for chemistry to occur efficiently. Finally, we also studied the influence on the dynamics of protein conformations at different ionic strengths and denaturant concentrations and observed the sharp collapse of the hydrophobic cleft and, in contrast, the gradual change of glucose oxidase.
机译:黄素蛋白可作为维生素B2(核黄素)的疏水位点,或在其他结构中与催化反应(如葡萄糖氧化)的辅因子一起发挥作用。在这项贡献中,我们报告了直接观察到两种黄素蛋白中的电荷分离和重组:核黄素结合蛋白和葡萄糖氧化酶。在飞秒分辨率下,我们观察到核黄素结合蛋白中从色氨酸到核黄素的超快电子转移,有两个反应时间:≈100fs(成分为86%)和700 fs(14%)。观察到电荷复合发生在8 ps内,这是由电荷分离态的衰减和基态的恢复所探测到的。电荷分离和重组的时间尺度表明动力学发生的局部结构紧密性,且效率超过99%。相反,在葡萄糖氧化酶中,黄素-腺嘌呤-二核苷酸与色氨酸/酪氨酸之间的电子转移要花费更长的时间,分别是1.8 ps(75%)和10 ps(25%)。相应的电荷重组发生在两个时间尺度(30 ps和纳秒)上,效率仍然超过97%。两种结构不同的蛋白质(同一家族)在时间尺度上的差异与功能上的差异相关:前者对维生素的疏水识别需要紧密结合的结构(超快动力学),而后者则需要进行氧化还原反应我们更喜欢形成电荷分离的状态,该状态的寿命足以使化学反应有效地进行。最后,我们还研究了在不同离子强度和变性剂浓度下对蛋白质构象动力学的影响,并观察到了疏水性裂缝的急剧塌陷,相反,葡萄糖氧化酶逐渐发生了变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号