首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure.
【2h】

Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure.

机译:通过高压分子动力学模拟溶剂化蛋白的本征可压缩性和体积压缩。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Constant pressure and temperature molecular dynamics techniques have been employed to investigate the changes in structure and volumes of two globular proteins, superoxide dismutase and lysozyme, under pressure. Compression (the relative changes in the proteins' volumes), computed with the Voronoi technique, is closely related with the so-called protein intrinsic compressibility, estimated by sound velocity measurements. In particular, compression computed with Voronoi volumes predicts, in agreement with experimental estimates, a negative bound water contribution to the apparent protein compression. While the use of van der Waals and molecular volumes underestimates the intrinsic compressibilities of proteins, Voronoi volumes produce results closer to experimental estimates. Remarkably, for two globular proteins of very different secondary structures, we compute identical (within statistical error) protein intrinsic compressions, as predicted by recent experimental studies. Changes in the protein interatomic distances under compression are also investigated. It is found that, on average, short distances compress less than longer ones. This nonuniform contraction underlines the peculiar nature of the structural changes due to pressure in contrast with temperature effects, which instead produce spatially uniform changes in proteins. The structural effects observed in the simulations at high pressure can explain protein compressibility measurements carried out by fluorimetric and hole burning techniques. Finally, the calculation of the proteins static structure factor shows significant shifts in the peaks at short wavenumber as pressure changes. These effects might provide an alternative way to obtain information concerning compressibilities of selected protein regions.
机译:恒压和温度分子动力学技术已被用来研究在压力下两种球状蛋白超氧化物歧化酶和溶菌酶的结构和体积的变化。用Voronoi技术计算的压缩(蛋白质体积的相对变化)与通过声速测量估算的所谓蛋白质固有压缩性密切相关。特别地,以Voronoi体积计算的压缩与实验估计值相符,预示着表观蛋白质压缩的负结合水贡献。尽管使用范德华力和分子体积低估了蛋白质的固有可压缩性,但Voronoi体积产生的结果更接近实验估计。值得注意的是,正如最近的实验研究所预测的那样,对于两种具有非常不同的二级结构的球状蛋白,我们计算出相同的(在统计误差之内)蛋白固有压缩。还研究了压缩下蛋白质原子间距离的变化。发现平均而言,短距离的压缩比长距离的压缩少。这种不均匀的收缩强调了由于压力引起的结构变化的特殊性质,而与温度效应相反,温度变化反而产生了蛋白质的空间均匀变化。在高压下模拟中观察到的结构效应可以解释通过荧光和空穴燃烧技术进行的蛋白质可压缩性测量。最后,蛋白质静态结构因子的计算结果表明,随着压力的变化,短波数峰的移动明显。这些效果可能提供了一种获取有关所选蛋白质区域可压缩性信息的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号