首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Structure-assisted redesign of a protein-zinc-binding site with femtomolar affinity.
【2h】

Structure-assisted redesign of a protein-zinc-binding site with femtomolar affinity.

机译:具有飞摩尔亲和力的蛋白质-锌结合位点的结构辅助重新设计。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have inserted a fourth protein ligand into the zinc coordination polyhedron of carbonic anhydrase II (CAII) that increases metal affinity 200-fold (Kd = 20 fM). The three-dimensional structures of threonine-199-->aspartate (T199D) and threonine-199-->glutamate (T199E) CAIIs, determined by x-ray crystallographic methods to resolutions of 2.35 Angstrum and 2.2 Angstrum, respectively, reveal a tetrahedral metal-binding site consisting of H94, H96, H119, and the engineered carboxylate side chain, which displaces zinc-bound hydroxide. Although the stereochemistry of neither engineered carboxylate-zinc interaction is comparable to that found in naturally occurring protein zinc-binding sites, protein-zinc affinity is enhanced in T199E CAII demonstrating that ligand-metal separation is a significant determinant of carboxylate-zinc affinity. In contrast, the three-dimensional structure of threonine-199-->histidine (T199H) CAII, determined to 2.25-Angstrum resolution, indicates that the engineered imidazole side chain rotates away from the metal and does not coordinate to zinc; this results in a weaker zinc-binding site. All three of these substitutions nearly obliterate CO2 hydrase activity, consistent with the role of zinc-bound hydroxide as catalytic nucleophile. The engineering of an additional protein ligand represents a general approach for increasing protein-metal affinity if the side chain can adopt a reasonable conformation and achieve inner-sphere zinc coordination. Moreover, this structure-assisted design approach may be effective in the development of high-sensitivity metal ion biosensors.
机译:我们已经将第四个蛋白质配体插入了碳酸酐酶II(CAII)的锌配位多面体中,从而使金属亲和力增加了200倍(Kd = 20 fM)。苏氨酸199->天门冬氨酸(T199D)和苏氨酸199->谷氨酸(T199E)CAII的三维结构,通过X射线晶体学方法分别确定为2.35埃和2.2埃的分辨率,揭示了四面体由H94,H96,H119和工程化的羧酸盐侧链组成的金属结合位点,取代了与锌结合的氢氧化物。尽管两种工程化的羧酸盐-锌相互作用的立体化学都无法与天然蛋白质锌结合位点中的立体化学相媲美,但T199E CAII中的蛋白质-锌亲和力得到了增强,表明配体-金属的分离是羧酸锌-锌亲和力的重要决定因素。相比之下,苏氨酸199->组氨酸(T199H)CAII的三维结构确定为2.25角分辨率,表明工程化的咪唑侧链旋转远离金属并且不与锌配位。这导致较弱的锌结合位点。所有这三个取代几乎消除了CO2氢化酶的活性,这与结合锌的氢氧化物作为催化亲核试剂的作用一致。如果侧链可以采用合理的构象并实现内球锌配位,则额外的蛋白质配体的工程化是提高蛋白质-金属亲和力的通用方法。而且,这种结构辅助设计方法可能对开发高灵敏度金属离子生物传感器有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号