首页> 美国卫生研究院文献>Polymers >Theoretical Modeling of Polymer Translocation: From the Electrohydrodynamics of Short Polymers to the Fluctuating Long Polymers
【2h】

Theoretical Modeling of Polymer Translocation: From the Electrohydrodynamics of Short Polymers to the Fluctuating Long Polymers

机译:聚合物移位的理论模型:从短聚合物的电流体动力学到波动的长聚合物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The theoretical formulation of driven polymer translocation through nanopores is complicated by the combination of the pore electrohydrodynamics and the nonequilibrium polymer dynamics originating from the conformational polymer fluctuations. In this review, we discuss the modeling of polymer translocation in the distinct regimes of short and long polymers where these two effects decouple. For the case of short polymers where polymer fluctuations are negligible, we present a stiff polymer model including the details of the electrohydrodynamic forces on the translocating molecule. We first show that the electrohydrodynamic theory can accurately characterize the hydrostatic pressure dependence of the polymer translocation velocity and time in pressure-voltage-driven polymer trapping experiments. Then, we discuss the electrostatic correlation mechanisms responsible for the experimentally observed DNA mobility inversion by added multivalent cations in solid-state pores, and the rapid growth of polymer capture rates by added monovalent salt in α-Hemolysin pores. In the opposite regime of long polymers where polymer fluctuations prevail, we review the iso-flux tension propagation (IFTP) theory, which can characterize the translocation dynamics at the level of single segments. The IFTP theory is valid for a variety of polymer translocation and pulling scenarios. We discuss the predictions of the theory for fully flexible and rodlike pore-driven and end-pulled translocation scenarios, where exact analytic results can be derived for the scaling of the translocation time with chain length and driving force.
机译:孔隙电流体动力学和源于构象聚合物涨落的非平衡聚合物动力学的结合使驱动聚合物通过纳米孔易位的理论公式变得复杂。在这篇综述中,我们讨论了在短聚合物和长聚合物这两种作用解耦的不同区域中聚合物易位的模型。对于可忽略不计的聚合物波动的短聚合物,我们提出了一个刚性的聚合物模型,其中包括对易位分子的电流体动力学力的详细信息。我们首先表明,在压力-电压驱动的聚合物捕集实验中,电流体动力学理论可以准确地表征聚合物静置压力对聚合物移位速度和时间的依赖性。然后,我们讨论了静电相关机制,这些机制负责通过实验观察到的固态孔中添加的多价阳离子引起的DNA迁移率反转,以及通过在 α -溶血素毛孔。在长聚合物存在相反波动的长聚合物相反的情况下,我们回顾了等通量张力传播(IFTP)理论,该理论可以表征单个链段水平上的易位动力学。 IFTP理论适用于各种聚合物移位和拉动情况。我们讨论了对完全柔性的杆状孔驱动和末端拉动移位方案的理论预测,其中可以得出精确的分析结果,以根据链长和驱动力来缩放移位时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号