首页> 美国卫生研究院文献>Polymers >Study of Physical and Degradation Properties of 3D-Printed Biodegradable Photocurable Copolymers PGSA-co-PEGDA and PGSA-co-PCLDA
【2h】

Study of Physical and Degradation Properties of 3D-Printed Biodegradable Photocurable Copolymers PGSA-co-PEGDA and PGSA-co-PCLDA

机译:3D打印的可生物降解光固化共聚物PGSA-co-PEGDA和PGSA-co-PCLDA的物理和降解性能的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As acrylated polymers become more widely used in additive manufacturing, their potential applications toward biomedicine also raise the demand for biodegradable, photocurable polymeric materials. Polycaprolactone diacrylate (PCLDA) and poly(ethylene glycol) diacrylate (PEGDA) are two popular choices of materials for stereolithography (SLA) and digital light processing additive manufacturing (DLP-AM), and have been applied to many biomedical related research. However, both materials are known to degrade at a relatively low rate in vivo, limiting their applications in biomedical engineering. In this work, biodegradable, photocurable copolymers are introduced by copolymerizing PCLDA and/or PEGDA with poly(glycerol sebacate) acrylate (PGSA) to form a network polymer. Two main factors are discussed: the effect of degree of acrylation in PGSA and the weight ratio between the prepolymers toward the mechanical and degradation properties. It is found that by blending prepolymers with various degree of acrylation and at various weight ratios, the viscosity of the prepolymers remains stable, and are even more 3D printable than pure substances. The formation of various copolymers yielded a database with selectable Young’s moduli between 0.67–10.54 MPa, and the overall degradation rate was significantly higher than pure substance. In addition, it is shown that copolymers fabricated by DLP-AM fabrication presents higher mechanical strength than those fabricated via direct UV exposure. With the tunable mechanical and degradation properties, the photocurable, biodegradable copolymers are expected to enable a wider application of additive manufacturing toward tissue engineering.
机译:随着丙烯酸酯聚合物越来越广泛地用于增材制造中,其在生物医学中的潜在应用也提高了对可生物降解的,可光固化的聚合物材料的需求。聚己内酯二丙烯酸酯(PCLDA)和聚乙二醇二丙烯酸酯(PEGDA)是用于立体光刻(SLA)和数字光处理增材制造(DLP-AM)的两种流行材料选择,并且已应用于许多生物医学相关研究。但是,已知这两种材料在体内的降解速率都较低,从而限制了它们在生物医学工程中的应用。在这项工作中,通过使PCLDA和/或PEGDA与聚癸二酸甘油酯(PGSA)共聚形成网络聚合物,引入了可生物降解的可光固化共聚物。讨论了两个主要因素:PGSA中丙烯酸化程度的影响以及预聚物之间的重量比对机械性能和降解性能的影响。发现通过将具有各种丙烯酸化程度和各种重量比的预聚物共混,该预聚物的粘度保持稳定,并且比纯物质更可3D打印。各种共聚物的形成产生了一个数据库,其杨氏模量在0.67-10.54 MPa之间,并且总降解率明显高于纯物质。另外,显示出通过DLP-AM制备的共聚物表现出比通过直接UV暴露制备的共聚物更高的机械强度。具有可调节的机械性能和降解性能,可光固化的,可生物降解的共聚物有望在组织工程领域广泛应用增材制造技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号