首页> 美国卫生研究院文献>Polymers >New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation
【2h】

New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation

机译:聚合物弛豫从次级弛豫到末端流的时间-温度相关性的新见解:通用且已开发的WLF方程的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The three equations involved in the time-temperature superposition (TTS) of a polymer, i.e., Williams–Landel–Ferry (WLF), Vogel–Fulcher–Tammann–Hesse (VFTH) and the Arrhenius equation, were re-examined, and the mathematical equivalence of the WLF form to the Arrhenius form was revealed. As a result, a developed WLF (DWLF) equation was established to describe the temperature dependence of relaxation property for the polymer ranging from secondary relaxation to terminal flow, and its necessary criteria for universal application were proposed. TTS results of viscoelastic behavior for different polymers including isotactic polypropylene (iPP), high density polyethylene (HDPE), low density polyethylene (LDPE) and ethylene-propylene rubber (EPR) were well achieved by the DWLF equation at high temperatures. Through investigating the phase-separation behavior of poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) (PMMA/SMA) and iPP/EPR blends, it was found that the DWLF equation can describe the phase separation behavior of the amorphous/amorphous blend well, while the nucleation process leads to a smaller shift factor for the crystalline/amorphous blend in the melting temperature region. Either the TTS of polystyrene (PS) and PMMA or the secondary relaxations of PMMA and polyvinyl chloride (PVC) confirmed that the Arrhenius equation can be valid only in the high temperature region and invalid in the vicinity of glass transition due to the strong dependence of apparent activation energy on temperature; while the DWLF equation can be employed in the whole temperature region including secondary relaxation and from glass transition to terminal relaxation. The theoretical explanation for the universal application of the DWLF equation was also revealed through discussing the influences of free volume and chemical structure on the activation energy of polymer relaxations.
机译:重新检查了聚合物的时间-温度叠加(TTS)中的三个方程,即威廉姆斯-兰德尔-费里(WLF),沃格尔-富勒-坦曼-黑塞(VFTH)和阿伦尼乌斯方程,揭示了WLF形式与Arrhenius形式的数学等价性。结果,建立了发展的WLF(DWLF)方程来描述聚合物的弛豫性能与温度的关系,从二次弛豫到末端流,并提出了其普遍应用的必要标准。通过高温下的DWLF方程可以很好地获得包括等规聚丙烯(iPP),高密度聚乙烯(HDPE),低密度聚乙烯(LDPE)和乙丙橡胶(EPR)在内的不同聚合物的粘弹性行为的TTS结果。通过研究聚甲基丙烯酸甲酯/聚苯乙烯-马来酸酐(PMMA / SMA)和iPP / EPR共混物的相分离行为,发现DWLF方程可以描述非晶相的相分离行为。 /非晶态共混物,而成核过程导致在熔融温度区域中结晶/非晶态共混物的位移因子较小。聚苯乙烯(PS)和聚甲基丙烯酸甲酯的TTS或聚甲基丙烯酸甲酯和聚氯乙烯(PVC)的二次弛豫都证实了Arrhenius方程仅在高温区域才是有效的,而在玻璃化转变附近则是无效的,这归因于表观活化能随温度变化;而DWLF方程可用于包括二次弛豫以及从玻璃化转变到最终弛豫的整个温度区域。通过讨论自由体积和化学结构对聚合物弛豫活化能的影响,也揭示了DWLF方程通用应用的理论解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号