首页> 美国卫生研究院文献>PLoS Genetics >A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression
【2h】

A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression

机译:通过Orc5绑定域限制DNA复制的新型Rrm3功能与Rrm3作为ATPase /解旋酶的功能在遗传上可分离以促进叉子的前进

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186–212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks.
机译:响应复制压力,细胞激活S内检查点,诱导DNA修复途径,增加核苷酸水平,并抑制起源。在这里,我们报告Rrm3与复制起点的子集相关联,并在复制压力下控制DNA合成。 DNA合成控制所需的N末端结构域映射到残基186-212,这对于结合起源识别复合体的Orc5也至关重要。该结构域的缺失对缺乏复制检查点介体Mrc1的细胞具有致命性,并在暴露于复制应激源羟基脲时导致突变。这种新颖的Rrm3功能独立于其作为ATPase /解旋酶在通过聚合酶阻滞障碍促进复制叉进展中的既定角色。使用定量质谱和遗传分析,我们发现同源重组因子Rdh54和Rad5依赖的无错DNA损伤旁路是当Rrm3催化活性被破坏时产生的DNA损伤的独立机制,而这些机制对于DNA损伤耐受是必不可少的当复制功能被破坏时,表明由每个Rrm3功能丧失产生的DNA损伤是明显的。尽管两种病变类型都激活了DNA损伤检查点,但我们发现核苷酸水平的升高不足以在复制压力下继续进行DNA合成。在一起,我们的发现表明Rrm3通过其Orc5结合域在限制DNA合成中的作用,该基因在遗传上和物理上与其在促进叉状复制过程中所建立的催化作用可分离。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号