首页> 美国卫生研究院文献>PLoS Genetics >Synergistic Interactions between the Molecular and Neuronal Circadian Networks Drive Robust Behavioral Circadian Rhythms in Drosophila melanogaster
【2h】

Synergistic Interactions between the Molecular and Neuronal Circadian Networks Drive Robust Behavioral Circadian Rhythms in Drosophila melanogaster

机译:分子和神经元昼夜节律网络之间的协同相互作用驱动果蝇的稳健的行为昼夜节律。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most organisms use 24-hr circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila melanogaster CLOCK (CLK) and CYCLE (CYC) initiates the circadian system by promoting rhythmic transcription of hundreds of genes. However, it is still not clear whether high amplitude transcriptional oscillations are essential for circadian timekeeping. In order to address this issue, we generated flies in which the amplitude of CLK-driven transcription can be reduced partially (approx. 60%) or strongly (90%) without affecting the average levels of CLK-target genes. The impaired transcriptional oscillations lead to low amplitude protein oscillations that were not sufficient to drive outputs of peripheral oscillators. However, circadian rhythms in locomotor activity were resistant to partial reduction in transcriptional and protein oscillations. We found that the resilience of the brain oscillator is depending on the neuronal communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome low amplitude transcriptional oscillations depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of molecular rhythms than the rest of the circadian neuronal groups in the fly brain. Therefore, our work reveals the importance of high amplitude transcriptional oscillations for cell-autonomous circadian timekeeping. Moreover, we demonstrate that the circadian neuronal network is an essential buffering system that protects against changes in circadian transcription in the brain.
机译:大多数生物使用24小时生物钟来保持时间秩序并预测每日环境变化。在果蝇中,CLOCK(CLK)和CYCLE(CYC)通过促进数百种基因的有节奏转录来启动昼夜节律系统。然而,尚不清楚高振幅转录振荡是否对昼夜节律计时至关重要。为了解决这个问题,我们产生了苍蝇,其中CLK驱动的转录幅度可以部分降低(大约60%)或强烈降低(90%),而不会影响CLK靶基因的平均水平。受损的转录振荡导致低幅度的蛋白质振荡,不足以驱动外围振荡器的输出。然而,运动活动的昼夜节律可抵抗部分减少转录和蛋白质振荡。我们发现,大脑振荡器的弹性取决于大脑中昼夜节律神经元之间的神经元通讯。确实,脑振子克服低振幅转录振荡的能力取决于神经肽PDF的作用,以及与苍蝇脑中其他昼夜节律神经元组具有相同或更高分子节律振幅的pdf表达细胞。因此,我们的工作揭示了高振幅转录振荡对于细胞自主昼夜节律的重要性。此外,我们证明了昼夜节律神经网络是一种必需的缓冲系统,可以防止大脑中昼夜节律的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号