首页> 美国卫生研究院文献>PLoS Genetics >Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge Primary Endosymbiont of the Cockroach Blattella germanica
【2h】

Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge Primary Endosymbiont of the Cockroach Blattella germanica

机译:Blattabacterium菌株Bge蟑螂德国小att的主要内生菌的进化趋同和氮代谢

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.
机译:昆虫的细菌共生菌在提高宿主饮食中起着核心作用。在某些情况下,例如蚜虫和采采蝇,内共生素补充了生活在缺乏营养的饮食上的宿主的代谢能力,而杂食性木匠蚂蚁藏匿的细菌参与了氮的循环利用。在这项研究中,我们描述了布拉塔细菌菌株Bge的基因组序列和推断的代谢,该细菌是杂食性德国蟑螂德国小Bl的主要黄杆菌内共生体。通过与其他昆虫内共生体和自由生活的黄杆菌的比较基因组学,我们揭示了布拉塔细菌菌株Bge仅与木匠蚂蚁主要的伽玛变形杆菌内共生菌Blochmannia菌株具有相同的功能基因类别分布。这是共生过程中进化趋同的一个显着例子,涉及以相似饮食为食的宿主体内非常遥远的系统发生细菌类群。尽管有相似之处,但每种情况下都出现了不同的氮经济策略。两种细菌内共生菌均编码尿素酶,但显示出不同的代谢功能:Bl草菌株从膳食尿素产生氨,然后将其用作氮源,而杆菌杆菌Bge编码完整的尿素循环,与尿素酶结合产生氨作为酶。最终产品。正如推断的代谢网络的化学计量分析所强烈建议的那样,蟑螂内共生体不仅在向宿主提供营养的过程中起着至关重要的作用,而且在氨基酸和氮排泄的分解代谢中也起着至关重要的作用。在这里,我们解释了蟑螂神秘地返回祖先单性状态的代谢原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号