首页> 美国卫生研究院文献>PLoS Genetics >Ion Channel Clustering at the Axon Initial Segment and Node of Ranvier Evolved Sequentially in Early Chordates
【2h】

Ion Channel Clustering at the Axon Initial Segment and Node of Ranvier Evolved Sequentially in Early Chordates

机译:轴突初始节段和Ranvier节点上的离子通道簇在早期和弦中依次演化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7) potassium channels is based on linkage to the actin–spectrin cytoskeleton, which is mediated by the adaptor protein ankyrin-G. We identified key steps in the evolution of this axonal channel clustering. The anchor motif for sodium channel clustering evolved early in the chordate lineage before the divergence of the wormlike cephalochordate, amphioxus. Axons of the lamprey, a very primitive vertebrate, exhibited some invertebrate features (lack of myelin, use of giant diameter to hasten conduction), but possessed narrow initial segments bearing sodium channel clusters like in more recently evolved vertebrates. The KCNQ potassium channel anchor motif evolved after the divergence of lampreys from other vertebrates, in a common ancestor of shark and humans. Thus, clustering of voltage-gated sodium channels was a pivotal early innovation of the chordates. Sodium channel clusters at the axon initial segment serving the generation of action potentials evolved long before the node of Ranvier. KCNQ channels acquired anchors allowing their integration into pre-existing sodium channel complexes at about the same time that ancient vertebrates acquired myelin, saltatory conduction, and hinged jaws. The early chordate refinements in action potential mechanisms we have elucidated appear essential to the complex neural signaling, active behavior, and evolutionary success of vertebrates.
机译:在许多哺乳动物神经元中,轴突初始节和兰维耶结节上密集的离子通道簇是动作电位生成和快速传导的基础。哺乳动物电压门控性钠和KCNQ(Kv7)钾离子通道的轴突簇基于与肌动蛋白-血影蛋白细胞骨架的连锁,该骨架由衔接蛋白锚蛋白-G介导。我们确定了这种轴突通道聚类进化的关键步骤。钠通道簇的锚定基序在蠕虫状头孢类,两栖类的发散之前,在氯酸盐谱系中发展。七lamp鳗的轴突,一种非常原始的脊椎动物,表现出一些无脊椎动物特征(缺乏髓磷脂,利用巨大直径加速传导),但具有较窄的初始片段,像最近进化的脊椎动物一样,带有钠通道簇。在鲨鱼和人类共同祖先,七lamp鳗与其他脊椎动物分叉后,KCNQ钾离子通道锚定基序演变而来。因此,电压门控钠通道的聚集是脊索动物的一项关键的早期创新。在轴突初始节段的钠通道簇服务于动作电位的产生,在Ranvier的节点之前很久就开始进化。 KCNQ通道获得了锚,使它们能够整合到已有的钠通道复合物中,而大约在古代脊椎动物获得髓磷脂,盐传导和铰链颚的同时。我们已经阐明了在动作电位机制中早期的碳酸盐改良对脊椎动物的复杂神经信号,活跃行为和进化成功至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号