首页> 美国卫生研究院文献>Plant Physiology >Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves
【2h】

Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves

机译:Hornwort气孔:与拥有4亿年历史的无叶化石植物共享的建筑和命运

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

As one of the earliest plant groups to evolve stomata, hornworts are key to understanding the origin and function of stomata. Hornwort stomata are large and scattered on sporangia that grow from their bases and release spores at their tips. We present data from development and immunocytochemistry that identify a role for hornwort stomata that is correlated with sporangial and spore maturation. We measured guard cells across the genera with stomata to assess developmental changes in size and to analyze any correlation with genome size. Stomata form at the base of the sporophyte in the green region, where they develop differential wall thickenings, form a pore, and die. Guard cells collapse inwardly, increase in surface area, and remain perched over a substomatal cavity and network of intercellular spaces that is initially fluid filled. Following pore formation, the sporophyte dries from the outside inwardly and continues to do so after guard cells die and collapse. Spore tetrads develop in spore mother cell walls within a mucilaginous matrix, both of which progressively dry before sporophyte dehiscence. A lack of correlation between guard cell size and DNA content, lack of arabinans in cell walls, and perpetually open pores are consistent with the inactivity of hornwort stomata. Stomata are expendable in hornworts, as they have been lost twice in derived taxa. Guard cells and epidermal cells of hornworts show striking similarities with the earliest plant fossils. Our findings identify an architecture and fate of stomata in hornworts that is ancient and common to plants without sporophytic leaves.
机译:作为最早发展出气孔的植物之一,金缕梅是了解气孔起源和功能的关键。 Hornwort气孔很大,散布在孢子囊上,孢子囊从其基部生长并在其顶端释放孢子。我们提供了来自发展和免疫细胞化学的数据,这些数据确定了与孢子囊和孢子成熟相关的角花气孔的作用。我们用气孔测量了整个属的保卫细胞,以评估大小的发育变化并分析与基因组大小的任何相关性。气孔在绿色区域中的孢子体底部形成,在那里它们形成不同的壁厚,形成孔并死亡。保卫细胞向内塌陷,表面积增加,并停留在最初充有流体的气孔下腔和细胞间空间网络上。孔形成后,孢子体从外部向内干燥,并在保卫细胞死亡并塌陷后继续这样做。在粘液基质内的孢子母细胞壁中形成孢子四分体,两者在孢子体裂开之前逐渐干燥。保卫细胞大小与DNA含量之间缺乏相关性,细胞壁中缺乏阿拉伯聚糖以及永久开放的毛孔与金盏花气孔的失活相一致。气孔在角艾属中易消耗,因为它们在衍生的类群中损失了两次。金盏花的保卫细胞和表皮细胞与最早的植物化石具有惊人的相似性。我们的发现确定了金缕梅气孔的结构和结局,这是古老的,并且是没有孢子叶的植物所共有的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号