首页> 美国卫生研究院文献>Plant Physiology >Upgrading Root Physiology for Stress Tolerance by Ectomycorrhizas: Insights from Metabolite and Transcriptional Profiling into Reprogramming for Stress Anticipation
【2h】

Upgrading Root Physiology for Stress Tolerance by Ectomycorrhizas: Insights from Metabolite and Transcriptional Profiling into Reprogramming for Stress Anticipation

机译:根外生菌根生物学提高了对胁迫的耐受性:从代谢物和转录谱到重编程以预测胁迫的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ectomycorrhizas (EMs) alleviate stress tolerance of host plants, but the underlying molecular mechanisms are unknown. To elucidate the basis of EM-induced physiological changes and their involvement in stress adaptation, we investigated metabolic and transcriptional profiles in EM and non-EM roots of gray poplar (Populus × canescens) in the presence and absence of osmotic stress imposed by excess salinity. Colonization with the ectomycorrhizal fungus Paxillus involutus increased root cell volumes, a response associated with carbohydrate accumulation. The stress-related hormones abscisic acid and salicylic acid were increased, whereas jasmonic acid and auxin were decreased in EM compared with non-EM roots. Auxin-responsive reporter plants showed that auxin decreased in the vascular system. The phytohormone changes in EMs are in contrast to those in arbuscular mycorrhizas, suggesting that EMs and arbuscular mycorrhizas recruit different signaling pathways to influence plant stress responses. Transcriptome analyses on a whole genome poplar microarray revealed activation of genes related to abiotic and biotic stress responses as well as of genes involved in vesicle trafficking and suppression of auxin-related pathways. Comparative transcriptome analysis indicated EM-related genes whose transcript abundances were independent of salt stress and a set of salt stress-related genes that were common to EM non-salt-stressed and non-EM salt-stressed plants. Salt-exposed EM roots showed stronger accumulation of myoinositol, abscisic acid, and salicylic acid and higher K+-to-Na+ ratio than stressed non-EM roots. In conclusion, EMs activated stress-related genes and signaling pathways, apparently leading to priming of pathways conferring abiotic stress tolerance.
机译:菌根(EMs)减轻了宿主植物的胁迫耐受性,但其潜在的分子机制尚不清楚。为了阐明EM诱导的生理变化的基础及其在胁迫适应中的参与,我们研究了在盐分过高引起和不存在渗透胁迫的情况下,灰杨(Populus×canescens)的EM和非EM根中的代谢和转录谱。外生菌根真菌Paxillus involutus定植增加了根细胞体积,这是与碳水化合物积累相关的反应。与非EM根相比,EM中与胁迫相关的激素脱落酸和水杨酸增加,而茉莉酸和生长素减少。生长素敏感的报道植物显示生长素在血管系统中减少。 EM中的植物激素变化与丛枝菌根中的变化相反,表明EM和丛枝菌根吸收不同的信号传导途径来影响植物胁迫反应。在全基因组杨树微阵列上进行的转录组分析显示,与非生物和生物胁迫反应相关的基因以及与小泡运输和生长素相关途径抑制有关的基因均被激活。对比转录组分析表明,其转录丰度与盐胁迫无关的EM相关基因和EM非盐胁迫和非EM盐胁迫植物共有的一组盐胁迫相关基因。盐胁迫的EM根比受胁迫的非EM根显示出更强的肌醇,脱落酸和水杨酸蓄积,并且K + -Na> s 比例更高。总之,EMs激活了与压力有关的基因和信号传导途径,显然导致引发赋予非生物胁迫耐受性的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号