首页> 美国卫生研究院文献>Plant Physiology >The Chlamydomonas reinhardtii cia3 Mutant Lacking a Thylakoid Lumen-Localized Carbonic Anhydrase Is Limited by CO2 Supply to Rubisco and Not Photosystem II Function in Vivo
【2h】

The Chlamydomonas reinhardtii cia3 Mutant Lacking a Thylakoid Lumen-Localized Carbonic Anhydrase Is Limited by CO2 Supply to Rubisco and Not Photosystem II Function in Vivo

机译:衣藻衣藻cia3突变体缺乏类囊体 流明局部碳酸酐酶受二氧化碳供应限制 Rubisco和非Photosystem II体内功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Chlamydomonas reinhardtii cia3 mutant has a phenotype indicating that it requires high-CO2 levels for effective photosynthesis and growth. It was initially proposed that this mutant was defective in a carbonic anhydrase (CA) that was a key component of the photosynthetic CO2-concentrating mechanism (CCM). However, more recent identification of the genetic lesion as a defect in a lumenal CA associated with photosystem II (PSII) has raised questions about the role of this CA in either the CCM or PSII function. To resolve the role of this lumenal CA, we re-examined the physiology of the cia3 mutant. We confirmed and extended previous gas exchange analyses by using membrane-inlet mass spectrometry to monitor16O2,18O2, and CO2 fluxes in vivo. The results demonstrate that PSII electron transport is not limited in the cia3 mutant at low inorganic carbon (Ci). We also measured metabolite pools sizes and showed that the RuBP pool does not fall to abnormally low levels at low Ci as might be expected by a photosynthetic electron transport or ATP generation limitation. Overall, the results demonstrate that under low Ci conditions, the mutant lacks the ability to supply Rubisco with adequate CO2 for effective CO2 fixation and is not limited directly by any aspect of PSII function. We conclude that the thylakoid CA is primarily required for the proper functioning of the CCM at low Ci by providing an ample supply of CO2 for Rubisco.
机译:莱茵衣藻cia3突变体具有表型,表明它需要高CO2水平才能有效地进行光合作用和生长。最初提出,该突变体在碳酸酐酶(CA)中有缺陷,而碳酸酐酶是光合作用CO2浓缩机制(CCM)的关键组成部分。然而,最近将遗传病变鉴定为与光系统II(PSII)相关的腔内CA的缺陷已引起对该CA在CCM或PSII功能中的作用的质疑。为了解决该腔CA的作用,我们重新检查了cia3突变体的生理学。我们通过膜入口质谱法监测并监测了体内的 16 O2, 18 O2和CO2通量,从而证实并扩展了以前的气体交换分析。结果表明,在低无机碳(Ci)的cia3突变体中,PSII电子传递不受限制。我们还测量了代谢物库的大小,结果表明,RuBP库在低Ci下不会降至光合电子传输或ATP产生限制所预期的异常低水平。总体而言, 结果表明,在低Ci条件下,该突变体缺乏 为Rubisco提供足够的二氧化碳以有效固定二氧化碳,并且不受PSII功能的任何方面的直接限制。我们 得出结论,类囊体CA主要是适当的 通过提供充足的C Rubisco的二氧化碳。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号