首页> 美国卫生研究院文献>Plant Physiology >Flavone Glucoside Uptake into Barley Mesophyll and ArabidopsisCell Culture Vacuoles. Energization Occurs by H+-Antiportand ATP-Binding Cassette-Type Mechanisms
【2h】

Flavone Glucoside Uptake into Barley Mesophyll and ArabidopsisCell Culture Vacuoles. Energization Occurs by H+-Antiportand ATP-Binding Cassette-Type Mechanisms

机译:大麦叶肉和拟南芥中黄酮糖苷的摄取细胞培养液泡。 H + -Antiport产生能量和ATP结合盒式机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many cases, secondary plant products accumulate in the large central vacuole of plant cells. However, the mechanisms involved in the transport of secondary compounds are only poorly understood. Here, we demonstrate that the transport mechanisms for the major barley (Hordeum vulgare) flavonoid saponarin (apigenin 6-C-glucosyl-7-O-glucoside) are different in various plant species: Uptake into barley vacuoles occurs via a proton antiport and is competitively inhibited by isovitexin (apigenin 6-C-glucoside), suggesting that both flavone glucosides are recognized by the same transporter. In contrast, the transport into vacuoles from Arabidopsis, which does not synthesize flavone glucosides, displays typical characteristics of ATP-binding cassette transporters. Transport of saponarin into vacuoles of both the species is saturable with a Km of 50 to 100 μm. Furthermore, the uptake of saponarin into vacuoles from a barley mutant exhibiting a strongly reduced flavone glucoside biosynthesis is drastically decreased when compared with the parentvariety. Thus, the barley vacuolar flavone glucoside/H+antiporter could be modulated by the availability of the substrate. Wepropose that different vacuolar transporters may be responsible for thesequestration of species-specific/endogenous and nonspecific/xenobioticsecondary compounds in planta.
机译:在许多情况下,次生植物产品积聚在植物细胞的大中央液泡中。但是,关于次级化合物运输的机制了解甚少。在这里,我们证明了主要大麦(Hordeum vulgare)黄酮皂苷(芹菜素6-C-葡萄糖基-7-O-葡萄糖苷)的运输机制在各种植物物种中都不同:通过质子的反转运进入大麦液泡,并且异黄酮毒素(芹菜素6-C-葡萄糖苷)具有竞争性抑制作用,表明这两种黄酮苷都被同一转运蛋白识别。相反,不合成黄酮苷的拟南芥向液泡的转运显示出ATP结合盒转运蛋白的典型特征。皂苷到两个物种的液泡中的运输都是饱和的,其Km为50至100μm。此外,与亲本相比,显示出黄酮糖苷生物合成大大降低的大麦突变体对液泡中皂苷的吸收显着降低。品种。因此,大麦液泡黄酮黄酮苷/ H + 反向转运蛋白可以通过底物的可用性来调节。我们建议由不同的液泡转运蛋白负责隔离物种特异性/内源性和非特异性/异源性植物中的次要化合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号