首页> 美国卫生研究院文献>Philosophical Transactions of the Royal Society B: Biological Sciences >Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
【2h】

Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).

机译:真核生物-真核生物(元藻)中新型遗传膜和蛋白质靶向机制的基因组减少和进化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote-eukaryote chimaeras or meta-algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all non-plant (meta-algal) chloroplasts. It took place twice, soon after green and red algae diverged over 550 Myr ago to form two independent major branches of the eukaryotic tree (chromalveolates and cabozoa), comprising both meta-algae and numerous secondarily non-photosynthetic lineages. In both cases, enslavement probably began by evolving a novel targeting of endomembrane vesicles to the perialgal vacuole to implant host porter proteins for extracting photosynthate. Chromalveolates arose by such enslavement of a unicellular red alga and evolution of chlorophyll c to form the kingdom Chromista and protozoan infrakingdom Alveolata, which diverged from the ancestral chromalveolate chimaera. Cabozoa arose when the common ancestor of euglenoids and cercozoan chlorarachnean algae enslaved a tetraphyte green alga with chlorophyll a and b. I suggest that in cabozoa the endomembrane vesicles originally budded from the Golgi, whereas in chromalveolates they budded from the endoplasmic reticulum (ER) independently of Golgi-targeted vesicles, presenting a potentially novel target for drugs against alveolate Sporozoa such as malaria parasites and Toxoplasma. These hypothetical ER-derived vesicles mediated fusion of the perialgal vacuole and rough ER (RER) in the ancestral chromist, placing the former red alga within the RER lumen. Subsequently, this chimaera diverged to form cryptomonads, which retained the red algal nucleus as a nucleomorph (NM) with approximately 464 protein-coding genes (30 encoding plastid proteins) and a red or blue phycobiliprotein antenna pigment, and the chromobiotes (heterokonts and haptophytes), which lost phycobilins and evolved the brown carotenoid fucoxanthin that colours brown seaweeds, diatoms and haptophytes. Chromobiotes transferred the 30 genes to the nucleus and lost the NM genome and nuclear-pore complexes, but retained its membrane as the periplastid reticulum (PPR), putatively the phospholipid factory of the periplastid space (former algal cytoplasm), as did the ancestral alveolate independently. The chlorarachnean NM has three minute chromosomes bearing approximately 300 genes riddled with pygmy introns. I propose that the periplastid membrane (PPM, the former algal plasma membrane) of chromalveolates, and possibly chlorarachneans, grows by fusion of vesicles emanating from the NM envelope or PPR. Dinoflagellates and euglenoids independently lost the PPM and PPR (after diverging from Sporozoa and chlorarachneans, respectively) and evolved triple chloroplast envelopes comprising the original plant double envelope and an extra outermost membrane, the EM, derived from the perialgal vacuole. In all metaalgae most chloroplast proteins are coded by nuclear genes and enter the chloroplast by using bipartite targeting sequences--an upstream signal sequence for entering the ER and a downstream chloroplast transit sequence. I present a new theory for the four-fold diversification of the chloroplast OM protein translocon following its insertion into the PPM to facilitate protein translocation across it (of both periplastid and plastid proteins). I discuss evidence from genome sequencing and other sources on the contrasting modes of protein targeting, cellular integration, and evolution of these two major lineages of eukaryote "cells within cells". They also provide powerful evidence for natural selection's effectiveness in eliminating most functionless DNA and therefore of a universally useful non-genic function for nuclear non-coding DNA, i.e. most DNA in the biosphere, and dramatic examples of genomic reduction. I briefly argue that chloroplast replacement in dinoflagellates, which happened at least twice, may have been evolutionarily easier than secondary symbiogenesis because parts of the chromalveolate protein-targeting machinery could have helped enslave the foreign plastids.
机译:叶绿体仅起源于蓝细菌,被蓝细菌原生生物奴役,形成了植物界(绿色植物,红色藻和青藻藻),但随后被横向转移到其他谱系中,形成了真核生物-真核生物或间生藻类。次生共生过程(两个系统发育上不同的真核细胞的永久合并)在所有非植物(元藻类)叶绿体膜的更复杂拓扑结构中留下了其进化作用的显着痕迹。它发生了两次,在绿藻和红藻在550 Myr之前分叉形成了真核树的两个独立的主要分支(色藻和cabo​​zoa)后不久,它既包含元藻类又包括许多次要的非光合谱系。在这两种情况下,奴役都可能始于将膜内囊泡靶向新的靶向膜囊泡以植入宿主波特蛋白以提取光合产物。铬藻酸酯是通过单细胞红藻的这种奴役和叶绿素c的进化而形成的,从而形成了Chromista和原生动物入侵的Alveolata王国,它们与祖先的铬藻酸酯分支分离。当类鹰嘴类动物和蓝藻藻类的共同祖先用叶绿素a和b奴役了四生植物绿藻时,出现了卡波佐亚。我建议在cabozoa中,膜内囊泡最初从高尔基体中萌芽,而在膜肺泡中,它们从内质网(ER)中萌芽,而与高尔基体靶向的囊泡无关,这为对抗肺泡孢子虫的药物(例如疟原虫和弓形虫)提出了潜在的新靶标。这些假设的ER来源的囊泡在祖先染色师中介导了周藻液泡和粗糙ER(RER)融合,从而将原先的红藻置于RER腔内。随后,该嵌合体分裂形成隐藻,将红色藻核保留为核型(NM),具有大约464个蛋白质编码基因(30个编码质体蛋白)和红色或蓝色藻胆蛋白触角色素,以及生色团(杂种和七种植物) ),失去了藻蓝蛋白,并演化出褐色的类胡萝卜素岩藻黄质,为褐色的海藻,硅藻和触藻类植物上色。嗜铬生物将30个基因转移到核中,丢失了NM基因组和核孔复合体,但保留了其膜作为质体网(PPR),推测是质体空间(前藻细胞质)的磷脂工厂,祖先的肺泡也是如此。独立地。氯霉素NM具有3分钟的染色体,该染色体带有约300个基因,这些基因内含侏儒内含子。我建议,通过融合从NM包膜或PPR产生的囊泡,可以形成邻苯二甲酸酯和可能的绿藻类的质膜(PPM,以前的藻质膜)。鞭毛藻和类花生藻分别失去了PPM和PPR(分别从Sporozoa和chlorarachneans分离后),并进化出三叶绿体包膜,包括原始的植物双包膜和一个最外层的膜EM,这些膜来自周膜液泡。在所有变藻中,大多数叶绿体蛋白都是由核基因编码的,并通过使用二部分靶向序列(进入ER的上游信号序列和下游叶绿体转运序列)进入叶绿体。我提出了一种新的理论,用于将叶绿体OM蛋白转运蛋白插入PPM中以促进其上的蛋白转运(质体蛋白和质体蛋白)实现四倍多样化。我讨论了来自基因组测序和其他来源的证据,这些证据涉及真核生物“细胞内细胞”这两个主要谱系的蛋白质靶向,细胞整合和进化的对比模式。它们还为自然选择消除大多数无功能的DNA的有效性提供了有力证据,因此也为核非编码DNA(即生物圈中的大多数DNA)普遍适用的非基因功能提供了有力证据,并提供了基因组还原的生动例子。我简要地指出,至少两次发生过鞭毛鞭毛藻的叶绿体置换,在进化上可能比继发性共生更容易,因为部分以草藻酸酯为靶点的蛋白质可能有助于奴役外来质体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号