首页> 美国卫生研究院文献>NPJ Biofilms and Microbiomes >Biofilm disruption by an air bubble reveals heterogeneous age-dependent detachment patterns dictated by initial extracellular matrix distribution
【2h】

Biofilm disruption by an air bubble reveals heterogeneous age-dependent detachment patterns dictated by initial extracellular matrix distribution

机译:气泡对生物膜的破坏揭示了异质的年龄依赖性分离模式该模式取决于初始的细胞外基质分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Bacteria often adhere to surfaces, where they form communities known as biofilms. Recently, it has been shown that biofilm formation initiates with the microscopically heterogeneous deposition of a skeleton of extracellular polymeric substances (EPS) by individual cells crawling on the surface, followed by growth of the biofilm into a surface-covering continuum. Here we report microfluidic experiments with Pseudomonas aeruginosa biofilms showing that their “hidden” heterogeneity can affect the later dynamics of their disruption. Using controlled air bubbles as a model for mechanical insult, we demonstrate that biofilm disruption is strongly dependent on biofilm age, and that disruption to early-stage biofilms can take the shape of a semi-regular pattern of ~15 µm diameter holes from which bacteria have been removed. We explain hole formation in terms of the rupture and retreat of the thin liquid layer created by the long bubble, which scrapes bacteria off the surface and rearranges their distribution. We find that the resulting pattern correlates with the spatial distribution of EPS: holes form where there is less EPS, whereas regions with more EPS act as strongholds against the scraping liquid front. These results show that heterogeneity in the microscale EPS skeleton of biofilms has profound consequences for later dynamics, including disruption. Because few attached cells suffice to regrow a biofilm, these results point to the importance of considering microscale heterogeneity when designing and assessing the effectiveness of biofilm removal strategies by mechanical forces.
机译:细菌通常粘附在表面上,在那里形成称为生物膜的群落。最近,研究表明生物膜的形成始于细胞外表面爬行的单个细胞在微观上异质沉积细胞外聚合物(EPS)的骨架,然后生物膜生长成覆盖表面的连续体。在这里,我们报告了铜绿假单胞菌生物膜的微流控实验,表明它们的“隐藏”异质性会影响其破坏的后期动力学。使用可控的气泡作为机械损伤的模型,我们证明了生物膜的破坏很大程度上取决于生物膜的年龄,并且对早期生物膜的破坏可以呈现出直径约15μm的半规则形状的孔,细菌从孔中已被删除。我们用长气泡产生的稀薄液体层的破裂和后退来解释孔的形成,这将细菌从表面刮下并重新排列了它们的分布。我们发现,结果模式与EPS的空间分布相关:在EPS较少的地方形成孔洞,而EPS较多的区域则成为抵抗刮擦液前沿的据点。这些结果表明,生物膜的微型EPS骨架中的异质性对后来的动力学(包括破坏)具有深远的影响。由于几乎没有附着的细胞足以再生生物膜,因此这些结果表明,在设计和评估通过机械力去除生物膜策略的有效性时,考虑微尺度异质性的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号