首页> 美国卫生研究院文献>Nanomaterials >Soliton Fractional Charges in Graphene Nanoribbon and Polyacetylene: Similarities and Differences
【2h】

Soliton Fractional Charges in Graphene Nanoribbon and Polyacetylene: Similarities and Differences

机译:石墨烯纳米带和聚乙炔中的孤子分数电荷:异同

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An introductory overview of current research developments regarding solitons and fractional boundary charges in graphene nanoribbons is presented. Graphene nanoribbons and polyacetylene have chiral symmetry and share numerous similar properties, e.g., the bulk-edge correspondence between the Zak phase and the existence of edge states, along with the presence of chiral boundary states, which are important for charge fractionalization. In polyacetylene, a fermion mass potential in the Dirac equation produces an excitation gap, and a twist in this scalar potential produces a zero-energy chiral soliton. Similarly, in a gapful armchair graphene nanoribbon, a distortion in the chiral gauge field can produce soliton states. In polyacetylene, a soliton is bound to a domain wall connecting two different dimerized phases. In graphene nanoribbons, a domain-wall soliton connects two topological zigzag edges with different chiralities. However, such a soliton does not display spin-charge separation. The existence of a soliton in finite-length polyacetylene can induce formation of fractional charges on the opposite ends. In contrast, for gapful graphene nanoribbons, the antiferromagnetic coupling between the opposite zigzag edges induces integer boundary charges. The presence of disorder in graphene nanoribbons partly mitigates antiferromagnetic coupling effect. Hence, the average edge charge of gap states with energies within a small interval is e/2, with significant charge fluctuations. However, midgap states exhibit a well-defined charge fractionalization between the opposite zigzag edges in the weak-disorder regime. Numerous occupied soliton states in a disorder-free and doped zigzag graphene nanoribbon form a solitonic phase.
机译:介绍了有关石墨烯纳米带中的孤子和分数边界电荷的最新研究进展的简介。石墨烯纳米带和聚乙炔具有手性对称性,并具有许多相似的特性,例如Zak相与边缘状态的存在之间的本体边缘对应关系,以及手性边界状态的存在,这对于电荷分级非常重要。在聚乙炔中,狄拉克方程式中的费米子质量势会产生激发能隙,标量势中的扭曲会产生零能手性孤子。类似地,在有间隙的扶手椅石墨烯纳米带中,手性规场的扭曲会产生孤子态。在聚乙炔中,孤子与连接两个不同二聚相的畴壁结合。在石墨烯纳米带中,畴壁孤子连接两个具有不同手性的拓扑之字形边缘。但是,这种孤子不显示自旋电荷分离。有限长度的聚乙炔中孤子的存在会诱导在相反两端形成分数电荷。相反,对于有间隙的石墨烯纳米带,相对的之字形边缘之间的反铁磁耦合会产生整数边界电荷。石墨烯纳米带中无序的存在部分减轻了反铁磁耦合效应。因此,具有较小间隔的能量的能隙状态的平均边缘电荷为 e / 2 ,具有明显的电荷波动。但是,在弱无序状态下,中间能隙状态在相对的锯齿形边缘之间显示出明确定义的电荷分级。无序掺杂的锯齿形石墨烯纳米带中的许多孤子态形成孤子相。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号