首页> 美国卫生研究院文献>Life >Markov Chain-Like Quantum Biological Modeling of Mutations Aging and Evolution
【2h】

Markov Chain-Like Quantum Biological Modeling of Mutations Aging and Evolution

机译:突变衰老和进化的马尔可夫链状量子生物学建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually coupled.
机译:最近的证据表明,量子力学与光合作用,磁接收,酶催化反应,嗅觉接收,光接收,遗传学,蛋白质中的电子转移以及进化有关。少说几句。在我们最近发表在《生命》杂志上的论文中,我们基于密码子基础推导了生物通道的算子和表示,并确定了适用于研究量子生物通道容量的量子通道模型。但是,该模型本质上是无记忆的,并且无法正确地建模突变错误的及时传播,衰老过程以及遗传信息世代相传。为解决这些问题,我们提出了新颖的量子力学模型来准确描述自发,诱导和适应性突变的产生过程及其在时间上的传播。本文提出的具有记忆的不同生物通道模型包括:(i)马尔可夫经典模型,(ii)类马尔可夫量子模型,以及(iii)混合量子经典模型。然后,我们将这些模型应用于世代相传的量子生物学通道容量的老化和演化研究。我们还讨论了这些模型相对于基于多级对称通道的马尔可夫模型和基于Kimura模型的马尔可夫过程的主要区别。这些模型非常通用,不仅适用于生物学通道容量,而且适用于生物学中的许多开放性问题,这是本文的主要重点。我们将证明,通常用于描述不同生物过程的著名量子Master方程方法,只是当观察间隔趋于零时,所提出的类量子Markov链状模型的一阶逼近。该模型的重要含义之一是,衰老表型由相互关联的程序化和随机(损坏)马尔可夫链式衰老模型中的不同基础转变概率决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号