首页> 美国卫生研究院文献>PLoS Computational Biology >Soma-axon coupling configurations that enhance neuronal coincidence detection
【2h】

Soma-axon coupling configurations that enhance neuronal coincidence detection

机译:增强神经元重合检测的Soma-轴突耦合配置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Coincidence detector neurons transmit timing information by responding preferentially to concurrent synaptic inputs. Principal cells of the medial superior olive (MSO) in the mammalian auditory brainstem are superb coincidence detectors. They encode sound source location with high temporal precision, distinguishing submillisecond timing differences among inputs. We investigate computationally how dynamic coupling between the input region (soma and dendrite) and the spike-generating output region (axon and axon initial segment) can enhance coincidence detection in MSO neurons. To do this, we formulate a two-compartment neuron model and characterize extensively coincidence detection sensitivity throughout a parameter space of coupling configurations. We focus on the interaction between coupling configuration and two currents that provide dynamic, voltage-gated, negative feedback in subthreshold voltage range: sodium current with rapid inactivation and low-threshold potassium current, IKLT. These currents reduce synaptic summation and can prevent spike generation unless inputs arrive with near simultaneity. We show that strong soma-to-axon coupling promotes the negative feedback effects of sodium inactivation and is, therefore, advantageous for coincidence detection. Furthermore, the feedforward combination of strong soma-to-axon coupling and weak axon-to-soma coupling enables spikes to be generated efficiently (few sodium channels needed) and with rapid recovery that enhances high-frequency coincidence detection. These observations detail the functional benefit of the strongly feedforward configuration that has been observed in physiological studies of MSO neurons. We find that IKLT further enhances coincidence detection sensitivity, but with effects that depend on coupling configuration. For instance, in models with weak soma-to-axon and weak axon-to-soma coupling, IKLT in the axon enhances coincidence detection more effectively than IKLT in the soma. By using a minimal model of soma-to-axon coupling, we connect structure, dynamics, and computation. Although we consider the particular case of MSO coincidence detectors, our method for creating and exploring a parameter space of two-compartment models can be applied to other neurons.
机译:巧合检测器神经元通过优先响应并发的突触输入来传输时序信息。哺乳动物听觉脑干中上橄榄的主要细胞(MSO)是出色的符合检测器。它们以高的时间精度对声源位置进行编码,从而区分输入之间的亚毫秒级定时差异。我们在计算上研究了输入区域(体和树突)与生成尖峰的输出区域(轴突和轴突初始段)之间的动态耦合如何增强MSO神经元中的重合检测。为此,我们制定了一个两室神经元模型,并在耦合配置的整个参数空间中表征了广泛的重合检测灵敏度。我们专注于耦合配置和两个电流之间的相互作用,这两个电流在亚阈值电压范围内提供动态的,电压门控的负反馈:具有快速失活的钠电流和低阈值钾电流IKLT。这些电流会减少突触求和,并可以防止产生尖峰,除非输入几乎同时出现。我们表明,强的体轴突耦合促进了钠失活的负反馈效应,因此,对于重合检测是有利的。此外,强体轴突耦合和弱轴突体耦合的前馈组合可以有效地产生尖峰(需要少量钠通道),并具有快速恢复的能力,从而增强了高频重合检测。这些观察结果详细说明了在MSO神经元的生理研究中已经观察到的强前馈配置的功能优势。我们发现IKLT进一步增强了重合检测的灵敏度,但是其效果取决于耦合配置。例如,在体轴突弱和轴突体突弱的模型中,轴突中的IKLT比躯体中的IKLT更有效地增强了重合检测。通过使用最小的体轴突耦合模型,我们可以连接结构,动力学和计算。尽管我们考虑了MSO重合检测器的特殊情况,但是我们创建和探索两室模型参数空间的方法也可以应用于其他神经元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号