首页> 美国卫生研究院文献>PLoS Computational Biology >Modern technologies and algorithms for scaffolding assembled genomes
【2h】

Modern technologies and algorithms for scaffolding assembled genomes

机译:支架组装基因组的现代技术和算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The computational reconstruction of genome sequences from shotgun sequencing data has been greatly simplified by the advent of sequencing technologies that generate long reads. In the case of relatively small genomes (e.g., bacterial or viral), complete genome sequences can frequently be reconstructed computationally without the need for further experiments. However, large and complex genomes, such as those of most animals and plants, continue to pose significant challenges. In such genomes, assembly software produces incomplete and fragmented reconstructions that require additional experimentally derived information and manual intervention in order to reconstruct individual chromosome arms. Recent technologies originally designed to capture chromatin structure have been shown to effectively complement sequencing data, leading to much more contiguous reconstructions of genomes than previously possible. Here, we survey these technologies and the algorithms used to assemble and analyze large eukaryotic genomes, placed within the historical context of genome scaffolding technologies that have been in existence since the dawn of the genomic era.
机译:通过产生长读段的测序技术的出现,大大简化了由shot弹枪测序数据进行的基因组序列的计算重建。在基因组相对较小(例如细菌或病毒)的情况下,完整的基因组序列可以经常通过计算重建,而无需进一步的实验。但是,庞大而复杂的基因组,例如大多数动植物的基因组,仍然构成重大挑战。在这样的基因组中,组装软件会产生不完整且不完整的重组体,需要其他实验得出的信息和人工干预才能重建单个染色体臂。最初设计用于捕获染色质结构的最新技术已经显示出可以有效地补充测序数据,从而导致基因组的连续重建比以前更可行。在这里,我们调查了这些技术以及用于组装和分析大型真核生物基因组的算法,这些技术被置于自基因组时代开始以来就存在的基因组支架技术的历史背景下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号