首页> 美国卫生研究院文献>PLoS Computational Biology >Predicting the effects of deep brain stimulation using a reduced coupled oscillator model
【2h】

Predicting the effects of deep brain stimulation using a reduced coupled oscillator model

机译:使用简化的耦合振荡器模型预测深部脑刺激的效果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep brain stimulation (DBS) is known to be an effective treatment for a variety of neurological disorders, including Parkinson’s disease and essential tremor (ET). At present, it involves administering a train of pulses with constant frequency via electrodes implanted into the brain. New ‘closed-loop’ approaches involve delivering stimulation according to the ongoing symptoms or brain activity and have the potential to provide improvements in terms of efficiency, efficacy and reduction of side effects. The success of closed-loop DBS depends on being able to devise a stimulation strategy that minimizes oscillations in neural activity associated with symptoms of motor disorders. A useful stepping stone towards this is to construct a mathematical model, which can describe how the brain oscillations should change when stimulation is applied at a particular state of the system. Our work focuses on the use of coupled oscillators to represent neurons in areas generating pathological oscillations. Using a reduced form of the Kuramoto model, we analyse how a patient should respond to stimulation when neural oscillations have a given phase and amplitude, provided a number of conditions are satisfied. For such patients, we predict that the best stimulation strategy should be phase specific but also that stimulation should have a greater effect if applied when the amplitude of brain oscillations is lower. We compare this surprising prediction with data obtained from ET patients. In light of our predictions, we also propose a new hybrid strategy which effectively combines two of the closed-loop strategies found in the literature, namely phase-locked and adaptive DBS.
机译:众所周知,深部脑刺激(DBS)是对多种神经系统疾病(包括帕金森氏病和原发性震颤(ET))的有效治疗方法。目前,它涉及通过植入大脑的电极以恒定频率执行一系列脉冲。新的“闭环”方法涉及根据持续出现的症状或大脑活动进行刺激,并有可能在效率,功效和减少副作用方面做出改进。闭环DBS的成功取决于能否设计出一种刺激策略,以最小化与运动障碍症状相关的神经活动的振荡。一个有用的垫脚石是建立一个数学模型,该模型可以描述当在系统的特定状态下施加刺激时脑部振荡应如何变化。我们的工作集中在使用耦合振荡器来表示产生病理振荡的区域中的神经元。我们使用简化形式的Kuramoto模型,分析了在满足多种条件的情况下,当神经振荡具有给定的相位和幅度时,患者应如何应对刺激。对于此类患者,我们预测最佳的刺激策略应针对特定阶段,但如果在脑震荡幅度较低的情况下应用刺激,则应具有更大的效果。我们将这种令人惊讶的预测与从ET患者获得的数据进行比较。根据我们的预测,我们还提出了一种新的混合策略,该策略有效地结合了文献中发现的两种闭环策略,即锁相和自适应DBS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号